个人角度来说,本章比第三章和第五章还是简单不少——因为有关方程组以及解的知识,我们在中学已经接触过,在意识思维里面没有那么的抽象,前三章掌握熟练的话,攻克本章的内容 轻轻松松~
考研考纲中的要求如下:
考试内容:
线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 解空间 非齐次线性方程组的通解
考试要求
l.会用克莱姆法则.
2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.
3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.
4.理解非齐次线性方程组解的结构及通解的概念.
5.掌握用初等行变换求解线性方程组的方法.
然后,大致说一下这章讲了哪些内容:
4.1线性方程组
当我们拿到一个方程组时,需要进行消元等多种方式求解求解未知数的解。实际上,常系数构成的矩阵所对应的三种初等变化,本质上就是方程之间的消元等操作~
- 交换两个方程
- 非0数乘某方程
- 某方程的l倍加至另一个方程
4.2线性方程组有解的判定
对于一个线性方程组,用向量表示时,记得要将向量写出列向量的形式,这样未知数x则可以充当数乘的存在,即乘以每一维度的分量,这里看起来会更直观一些~
对于解的判定,当系数矩阵的秩和增广系数矩阵的秩及未知量个数相等时,方程组存在唯一解;当两者相等且均小于未知量个数时,此时会产生无穷解(会出现自由未知量,取值结果不受限~);当两种矩阵的秩不相等时,方程组无解~
引入m参数和n参数,m为方程数而n为未知量个数,抽象出系数矩阵后,m相当于行数而n相当于列数——实则为n个m维向量。联想上一章的知识,当n>m时,我们可以下结论,n个m维的向量必然线性相关!也就是说,当列数大于行数,也就是未知量个数大于方程数时,则一定可以有相互消去的未知量——因此可以有无穷个解!
所谓自由未知量,也就是上述提到的【可以相互消去】的未知量;当自由未知量全部包含在方程中,称这样的方程组为同解方程组
4.3齐次线性方程组
方程右侧常数均为0的方程组~因为增广系数矩阵必然和系数矩阵由相同的秩,所以至少有解(即0解)~
若有非0解,则秩一定小于未知量个数,即出现自由未知量~
注意,一个结合前文的理解——若有非0解,则向量组一定线性相关!(已经找到了一组不全为0的系数)
(可以说,无论什么定义里,存在非0解和线性相关是互通的~而线性相关则证明成比例,则行列式为0,因此我们有等式——行列式为0=存在非解=线性相关)
4.4齐次方程组解的结构
本质的含义是:用有限个解表示无限个解~
- 方程组的解之间的和,依旧是方程的解
- 解的k倍,依旧是解
- 通解:基础解系表示出来的解~
- 基础解系本质上就是极大线性无关组,内部的向量彼此线性无关,且任何一个解都可以由该组线性表示~
(求解的过程看详细笔记~)
4.5非齐次方程解的结构
一个特解+齐次的基础解系,则是非齐次的基础解系~