《视觉slam十四讲》第六讲课后习题

1.证明线性方程Ax=b当系数矩阵A超定时,最小贰乘解为x=(A^{T}A)^{-1}A^{T}b

首先明白什么是系数矩阵超定:当方程数多于未知数个数时,也就是说对应系数矩阵的行数大于列数,这样该方程组被称为超定方程组。超定方程组在大多数情况下没有古典意义下的解,所以需要最小二乘解,也就是一种广义解。

最小二乘解是为了使残差e=\left \| b-Ax \right \|_{2}^{2}最小。首先证明其充分性:假设x^{*}=(A^{T}A)^{-1}A^{T}b为残差的解,存在解

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值