1.证明线性方程当系数矩阵A超定时,最小贰乘解为。
首先明白什么是系数矩阵超定:当方程数多于未知数个数时,也就是说对应系数矩阵的行数大于列数,这样该方程组被称为超定方程组。超定方程组在大多数情况下没有古典意义下的解,所以需要最小二乘解,也就是一种广义解。
最小二乘解是为了使残差最小。首先证明其充分性:假设为残差的解,存在解
1.证明线性方程当系数矩阵A超定时,最小贰乘解为。
首先明白什么是系数矩阵超定:当方程数多于未知数个数时,也就是说对应系数矩阵的行数大于列数,这样该方程组被称为超定方程组。超定方程组在大多数情况下没有古典意义下的解,所以需要最小二乘解,也就是一种广义解。
最小二乘解是为了使残差最小。首先证明其充分性:假设为残差的解,存在解