高数啃书——核心理论(十一)曲线积分与曲面积分

本文概述了曲线积分(包括弧长和坐标积分)的定义、性质、计算方法,强调了格林公式在求解中的作用,以及两类积分之间的联系。重点在于掌握计算技巧,特别是对物理意义的理解和实际应用,如曲面积分在质量与流量计算中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

依旧是公式极其复杂恶心的一章,建议是:掌握两种线面积分的计算套路即可,和第8章一样属于同济版教材中最不重要的章节,不会对底层理解做过多考察~

1.弧长曲线积分的几何意义

2.弧长曲线积分的定义和性质

3.弧长曲线积分的计算方式

4.坐标曲线积分的几何意义

5.坐标曲面积分的定义and性质

6.坐标曲线积分的计算方式

7.两类曲线积分之间的联系

8.格林公式

9.平面上曲线积分与路径无关

10.二元函数的全微分求积

11.对面积曲面积分的定义和性质

12.面积曲面积分的计算方法

13.对坐标曲面积分的定义和性质

14.坐标曲面积分的计算方法

15.两类曲面积分的联系

16.高斯公式

      个人认为同济高数乃至数学一中最烧脑的一章。。。重点在于计算方式的掌握,如果理解不了可以暂时不强求,背熟积分公式即可。此外本贴暂时忽略两类曲面积分之间的联系,以及高斯公式的相关内容,日后会尽快更新,争取高效率学习。

        在数学中,曲线积分是积分的一种。积分函数的取值沿的不是区间,而是特定的曲线,称为积分路径。曲线积分有很多种类,当积分路径为闭合曲线时,称为环路积分或围道积分。曲线积分可分为:第一类曲线积分和第二类曲线积分。

        定义在曲面上的函数或向量值函数关于该曲面的积分。曲面积分一般分成第一型曲面积分和第二型曲面积分。

        第一型曲面积分物理意义来源于对给定密度函数的空间曲面,计算该曲面的质量。第二型曲面积分物理意义来源对于给定的空间曲面和流体的流速,计算单位时间流经曲面的总流量。

一型曲线积分与单积分的联系:设曲线L可表示为函数y=y(x)从a到b的一段。将弧微分ds近似为直线,由图2的直角三角形得~

二型曲线积分与单积分的联系:设曲线L可表示为函数y=y(x)从a到b的一段~

一二型曲线积分的联系:把一型的ds投影到dx与dy方向上,即可转换为二型

目录

11.1对弧长的曲线积分

11.2对坐标的曲线积分

11.3两类曲线积分的联系

11.4格林公式

11.5对面积的曲面积分

11.6对坐标的曲面积分 


考研数学一大纲对这一章的要求如下:

1.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.

2.掌握计算两类曲线积分的方法.

3.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.

4.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分。

5.了解散度旋度的概念,并会计算.


11.1对弧长的曲线积分

  • 几何意义是,曲线上的密度不想同,因此需要通过积分来求出变化的密度
  • 所谓的密度不同的曲线,可以有2维和3维两种
  • (函数值可以为负~)
  • 计算方法记住公式套路就行,花样不是很多
  • 原公式中x、y的均为t的函数,本质上就是参数方程;有时候y为x的函数,亦或x与y的函数,可以将其中一个之接视为参数t

11.2对坐标的曲线积分

  • 第二类曲线积分本质为变力在做功时方向和大小都在变化
  • 也分为二维和三维的情况
  • 对坐标的曲线积分,亦可以分段,且区间的变化是点的坐标到点的坐标的变化
  • 积分方向的选择非常重要~

11.3两类曲线积分的联系

  • 一类:f*德尔塔s(s即为根号下德尔塔x方和德尔塔y方的和)~
  • 二类:P*德尔塔x+Q*德尔塔y

11.4格林公式

  • 本质上,就是三维的牛顿莱布尼茨公式~
  • 单连通区域:D内任一闭曲线围城的部分都属于D~
  • 复联通区域:逆时针是正方向
  • 格林公式的定义:设闭区域D由分段光滑的曲线L围成,P(x,y)与Q(x,y)在D上有一阶连续偏导,则D区域上的二重积分,即为L闭区间的曲线积分,L为D的正方向曲线
  • 积分符号上有一个圆圈,意为闭曲线上的曲线积分
  • (例题一定要重视~)

11.5对面积的曲面积分

  • 定积分:积分域
  • 二重积分:平面域
  • 三重积分:空间域
  • 曲线积分:曲线弧
  • 曲面积分:曲面域~
  •  如果三元函数在光滑曲面上连续,则对面积的曲面积分存在~
  • 计算方式为将曲面投影在XoY平面上,相当于先用累次积分再用一次普通的定积分~

11.6对坐标的曲面积分 

  • 对坐标的曲面积分是由方向~
  • (例题非常重要)

 

 

func3是一个通过对积分进行嵌套积分得到的函。在给定的代码中,首先定义了一个名为func2的函,这个函是对func1在0到x之间进行积分得到的结果。然后,又定义了一个名为func3的函,这个函是对func2在0到x之间进行积分得到的结果。最后,使用fplot函将func1、func2和func3在区间[-10, 10]上绘制出来。根据代码中的注释,绘制的图形应该是保持坐标轴比例一致的。如果你想查看完整的代码并在MATLAB R2019a上运行,可以访问https://mianbaoduo.com/o/bread/YZyVlp9v。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [matlab匿名函实现含参变量的对分段函的不定积分及绘图](https://blog.csdn.net/weixin_43699700/article/details/105212739)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [【啃书】《智能优化算法及其MATLAB实例》例7.3模拟退火算法求解TSP问题](https://blog.csdn.net/weixin_44331401/article/details/109175759)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lyric群青

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值