人工势场法换道主动避撞加mpc模型预测控制,carsim和simulink联合仿真

人工势场法换道主动避撞加mpc模型预测控制,carsim和simulink联合仿真,有规划和控制轨迹对比图。
跟踪误差良好,可以作为学习人工势场方法在自动驾驶汽车轨迹规划上的应用资料。


人工势场法换道主动避撞是自动驾驶汽车领域的一项重要研究课题,本文通过与MPC(模型预测控制)相结合的方法,以及Carsim和Simulink的联合仿真,对人工势场法在自动驾驶汽车轨迹规划中的应用进行了探讨和分析。

首先,人工势场法是一种基于势场原理的路径规划方法,通过在环境中构建虚拟势场,利用汽车与势场的相互作用来进行路径规划和避碰控制。在自动驾驶汽车的换道场景中,人工势场法可以将车辆与其他车辆、障碍物之间的交互作用建模为势场,并通过调整势场的参数来实现车辆的主动避撞。

为了进一步提高路径规划的准确性和稳定性,本文采用了MPC模型预测控制方法。MPC基于车辆的动力学模型,通过对未来一段时间内的状态和控制量进行优化,实现对路径规划的预测和控制。通过将MPC与人工势场法相结合,可以充分利用MPC的优点,如考虑车辆动力学的特性、实时性较强等,进一步提高自动驾驶汽车的换道效果。

为了验证人工势场法与MPC的性能,本文采用了Carsim和Simulink的联合仿真平台。Carsim是一款用于汽车动力学仿真的软件,可以模拟车辆在不同路况下的运动特性。Simulink是一款常用的系统仿真工具,可以对汽车的控制系统进行建模和仿真。通过将人工势场法与MPC模型的控制算法与Carsim和Simulink相结合,可以实现对自动驾驶汽车在换道过程中轨迹的规划和控制。

实验结果表明,采用人工势场法与MPC相结合的方法能够有效地减少自动驾驶汽车在换道过程中的跟踪误差。通过与传统的轨迹规划方法进行比较,本文的方法在换道效果和稳定性方面表现出良好的性能。因此,本文的研究成果可以作为学习人工势场方法在自动驾驶汽车轨迹规划上的应用资料,对于提高自动驾驶汽车的换道能力具有一定的参考价值。

综上所述,本文通过人工势场法与MPC相结合的方法,以及Carsim和Simulink的联合仿真,对自动驾驶汽车的换道行为进行了研究和分析。实验结果表明,该方法具有较好的性能,可以作为学习人工势场方法在自动驾驶汽车轨迹规划上的应用资料。希望本文的研究成果能够为进一步提高自动驾驶汽车的换道能力提供一定的参考和借鉴。

相关代码,程序地址:http://imgcs.cn/lanzoun/737557347754.html
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值