搞技术的,不搞技术的,每天都会接触一些新词汇。没办法,现在是终身学习的时代,一天不学习就变成石器时代的古人了。作为输出型学习实践者,我把自己学到的内容总结一下,一文搞懂McpServer、FunctionCall、Agent的关系和区别。
在AI大模型技术的飞速发展中,MCP Server、Function Call和Agent作为关键组件,各自承担着不同的角色。它们之间的关系与差异不仅决定了AI系统的架构设计,还直接影响到任务执行的效率与灵活性。
本文将从定义、功能、交互方式以及应用场景等多个维度,深入剖析这三者的核心区别,并通过生动的例子帮助你理解其实际应用。
1、 定位的区别:工具箱、瑞士军刀与智能工人
(1)MCP Server:被动的工具箱
MCP Server(Model Context Protocol Server)是一种基于标准化协议的服务端程序,主要为大语言模型(LLM)提供外部数据和能力支持。例如,Fetch MCP Server可以抓取网页内容,Google Drive MCP Server可以读取文件。它的核心定位是“被动服务”,仅响应调用请求,不参与决策或推理。
MCP Server就像一个工具箱,里面装满了各种工具(如爬虫、数据库查询),但它不会主动使用这些工具,而是等待别人来挑选。
# 示例:调用Firecrawl MCP Server抓取网页
curl -X POST http://localhost:8080/crawl \
-H "Content-Type: application/json" \
-d '{"url": "https://example.com", "options": {"pageOptions": {"onlyMainContent": true}}}'
(2)Function Call:直接扩展模型的瑞士军刀
Function Call是指大模型直接调用预定义函数的能力,允许模型生成请求参数并整合结果。例如,模型可以通过Function Call查询天气或执行简单的数学计算。它的本质是“代码级工具”,通常与模型绑定部署。
Function Call就像一把瑞士军刀,虽然小巧但功能多样,可以直接嵌入模型中完成轻量级任务。
# 示例:使用Function Call查询天气
functions = [
{
"name": "get_current_weather",
"description": "获取指定城市的天气",
"parameters": {
"type": "object",
"properties": {"location": {"type": "string"}},
"required": ["location"]
}
}
]
(3)Agent:自主决策的智能工人
Agent是一种具备自主决策能力的AI实体,能够感知环境、规划任务并调用工具(包括MCP Server和Function Call)完成目标。例如,一个Agent可以接到“撰写AI趋势报告”的任务后,自动抓取数据、分析内容并生成报告。
Agent就像一位熟练的工人,不仅能挑选合适的工具,还能根据任务需求灵活组合工具完成复杂操作。
2、 功能对比:从单一到复杂
(1)MCP Server:专注数据供给
MCP Server的功能相对单一,专注于提供数据和工具接口。例如,它可以抓取网页、读取文件或调用API,但不具备推理能力。
优势:模块化设计,便于独立开发和扩展。
局限性:只能被动响应,无法主动解决问题。
(2)Function Call:轻量级任务处理
Function Call适合处理简单、低延迟的任务,例如实时翻译、情感分析等。它与模型紧密集成,能够在推理过程中快速调用。
优势:高效便捷,无需额外通信开销。
局限性:受模型运行时资源限制,无法执行耗时任务。
(3)Agent:复杂任务编排
Agent能够感知需求、推理规划并执行多步骤任务。例如,它可以通过调用多个MCP Server完成跨平台数据整合,或者结合Function Call实现动态调整策略。
优势:高自主性,支持复杂流程。
局限性:开发复杂度较高,需要集成推理框架和状态管理。
3、交互方式:被动响应与主动行动
(1)MCP Server:单向响应
MCP Server采用被动服务模式,仅在接收到请求时返回数据。例如,当模型需要抓取网页内容时,会通过HTTP/SSE协议发送请求,MCP Server抓取数据后返回。
(2)Function Call:模型内部触发
Function Call由模型运行时环境直接执行,开发者需预先定义函数并将其打包到模型服务中。这种方式适用于高频轻量任务。
(3)Agent:双向交互
Agent具备高自主性,不仅可以主动调用工具,还能与用户进行双向交互。例如,当用户提出模糊需求时,Agent可以进一步确认细节后再执行任务。
4、应用场景:从简单到复杂
(1)Function Call:实时天气查询
Function Call非常适合处理简单、同步的任务。例如,当用户询问“北京今天的天气如何”时,模型可以直接调用get_weather()函数获取结果。
(2)MCP Server:跨平台数据整合
MCP Server适用于复杂、异步的任务。例如,企业可以将内部系统(CRM、ERP)封装为MCP Server,供多个Agent安全调用。
(3)Agent:自动化客服
Agent擅长处理端到端的复杂任务。例如,在客户服务场景中,Agent可以自动监控用户反馈、分析问题并生成解决方案。
5、 选择依据:任务复杂度与团队协作
(1)任务复杂度
如果任务简单且低延迟,优先选择Function Call。
如果任务复杂且涉及多源数据整合,选择MCP Server。
如果任务需要自主决策和多步执行,选择Agent。
(2)部署灵活性
Function Call需与模型服务绑定,适合小型项目。
MCP Server可独立扩展,适合企业级应用。
Agent需要集成多种模块,适合大型复杂系统。
(3)协议标准化需求
Function Call无强制协议,实现方式因平台而异。
MCP Server严格遵循Model Context Protocol标准,便于跨团队协作。
Agent依赖于底层工具的协议规范,需综合考虑兼容性。
6、 协作关系示例:智能体+工具箱
在实际系统中,Function Call、MCP Server和Agent常常协同工作。例如:
-
用户提问:“帮我总结知乎上关于AI的最新讨论。”
-
LLM解析需求,调用Function Call检测平台类型。
-
Function Call返回“知乎”,LLM通过MCP协议请求爬虫服务。
-
MCP Server抓取网页数据后返回给LLM。
-
LLM生成摘要报告并返回给用户。
最后
MCP Server、Function Call和Agent在AI生态中扮演着不同角色,分别对应“工具箱”、“瑞士军刀”和“智能工人”。三者各有优劣,开发者应根据任务复杂度、团队协作需求和安全隔离性综合选择。通过合理搭配,可以构建出高效、灵活的AI系统,释放大模型的最大潜力。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!