【读代码】BAGEL:统一多模态理解与生成的模型

一、项目概览

1.1 核心定位

BAGEL是字节跳动推出的开源多模态基础模型,具有70亿激活参数(140亿总参数)。该模型在统一架构下实现了三大核心能力:

  • 多模态理解:在MME、MMBench等9大评测基准中超越Qwen2.5-VL等主流模型
  • 文本生成图像:生成质量媲美SD3等专业生成模型
  • 智能图像编辑:支持自由格式编辑、多视角合成等复杂场景

1.2 技术亮点

  • MoE架构:采用混合专家架构的Transformer(Mixture-of-Transformer-Experts)
  • 双编码设计:同时提取像素级(VAE)和语义级(ViT)图像特征
  • Next Token预测范式:统一语言和视觉token的生成目标

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kakaZhui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值