轻量级万物分割SAM模型——MobileSAM安装实测摘要

0、前言

本文将介绍一种轻量级万物分割SAM模型——MobileSAM的安装和实测情况。SAM是meta公司的一种图像分割大模型,它可以将图像中自带分割物体,他们号称“SAM已经学会了物体的概念”,诸如此类视觉大模型是目前图像分割领域的研究热点之一。然而,SAM模型存在着模型过于庞大对平民不太友好,只能运行在不差钱的人和公司的服务器上,这对于实际应用来说是不可接受的。然而,MobileSAM出现了,诸如此类的量化模型的出现给平民带来了福音,使得模型在保证准确率的同时,运行速度更快,更加适合实际应用。本文将体验MobileSAM模型,并进行实际运行测试,看看实际运行效果。
在这里插入图片描述

1、准备工作

安装

python环境说明

安装也比较简单,直接按照github主页要求按照就可以。我这里python版本是conda2021的 3.9版本
在这里插入图片描述
我计算机的配置是:
在这里插入图片描述

安装说明

在这里插入图片描述
根据如上版本要求安装好依赖pytorch,torchvision两个依赖后,可以直接安装sam:

pip install git+https://github.com/ChaoningZhang/MobileSAM.git

运行测试app

安装依赖

运行官方自带的app,需要安装最新版本的 gradio:

pip install gradio

这里要注意,如果是conda的环境,安装完后可能会出现打不开spyder的情况,是由于gradio安装时,可能是对pyqt做了更换,可以通过重新安装spyder解决(其它环境根据实际情况而定):

pip install Spyder

在这里插入图片描述

修改代码

打开官方自带的app.py,可以发现,默认把自动分割给注释掉了,
在这里插入图片描述
不去掉的话,运行只有手动分割:

如果要自动分割,简单做法直接替换一下函数就行:

segment_with_points替换为segment_everything

在这里插入图片描述

2、实际测试效果

运行app后,点击浏览器进入url:http://127.0.0.1:7860/:
在这里插入图片描述
默认加载自带demo图片:
在这里插入图片描述

自带图片测试

点击start segmenting按钮就开始自动分割了:
在这里插入图片描述
风格结果如下:
在这里插入图片描述
由上图可知分割的整体效果还是可以的,但是比较耗时,已经超过了10秒。

其它图片测试1

在这里插入图片描述
图片信息为
在这里插入图片描述
耗时为:
在这里插入图片描述

其它图片测试2

在这里插入图片描述
图片信息:
在这里插入图片描述
消耗时间:
在这里插入图片描述
结果:
在这里插入图片描述

总结

从运行几个demo可以看出,总体上,mobilesam的分割效果还是不错的,可以对高纹理特征的物体进行有效分割。但是离实际的产品应用可能还需要进一步优化,包括识别的速度、包括准确度、和稳定性。
总之,mobilesam的出现,以及量化大模型技术的出现,给大模型端到端和平明化应用带来了希望,这点还是要感谢那些具有开源精神和具有高超编码技术的计算机大拿们,应用一位网友的话做得“功德无量,让大模型进入寻常百姓家”。我们相信,随着更多类似量化技术的贡献,低功耗、实时运行大模型的时代会快速到来的。

### 将集成SAM模型修改为MobileSAM以减少模型尺寸 为了将已经融合了Segment Anything Model (SAM) 的模型转换成更轻量级版本即MobileSAM,主要策略集中在压缩原有架构并保持尽可能高的性能。具体措施可以从以下几个角度入手: #### 1. 使用小型化基础网络结构 采用专门为移动设备设计的小型卷积神经网络作为骨干网,比如MobileNet系列或ShuffleNet等替代原有的大型Transformer架构如Vision Transformer(ViT)[^1]。 ```python from torchvision.models import mobilenet_v2 def create_mobile_sam(): backbone = mobilenet_v2(pretrained=True).features # 进一步定义其余部分... ``` #### 2. 参数剪枝与量化技术应用 通过参数剪枝去除冗余连接,并利用量化方法降低权重表示精度来缩小模型体积。这不仅减少了存储空间需求,还提高了运行效率[^2]。 - **剪枝**:移除那些对于最终输出影响较小的节点及其相连边; - **量化**:把浮点数形式储存的数据转为低比特整数表达方式; #### 3. 转换至高效推理框架 借助工具链如TensorRT、ONNX Runtime或其他专为加速AI计算而生的技术栈完成部署前的最后一公里优化工作。特别是考虑到移动端资源受限的特点,选择合适的目标平台至关重要[^4]。 ```bash pip install onnxruntime-gpu # 或者安装适用于特定硬件环境下的版本 ``` 以上方案综合考虑到了模型效能与实际应用场景之间的权衡,在不牺牲太多准确性的前提下实现了显著瘦身效果。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机智新语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值