💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于Transformer的负荷预测研究
一、引言
负荷预测是电力系统运行和规划中的关键环节,对于保障电网安全稳定运行、提高能源利用效率具有重要意义。随着智能电网和大数据技术的发展,负荷预测面临着更高的精度和实时性要求。Transformer模型作为一种基于自注意力机制的深度学习模型,在自然语言处理等领域取得了显著成效,近年来也逐渐被应用于时间序列预测领域,包括负荷预测。本文旨在探讨基于Transformer的负荷预测方法,并分析其在实际应用中的效果和优势。
二、Transformer模型概述
1. Transformer模型原理
Transformer模型由Vaswani等人于2017年提出,主要基于自注意力机制(Self-Attention Mechanism),能够并行处理序列数据,有效捕捉数据中的长期依赖关系。Transformer模型由编码器和解码器两部分组成,但在负荷预测等任务中,通常只使用编码器部分。
2. Transformer在负荷预测中的应用
在负荷预测领域,Transformer模型能够利用历史负荷数据中的时序特征和周期性变化规律,通过自注意力机制学习数据之间的复杂关系,从而实现对未来负荷的准确预测。此外,Transformer模型还可以结合其他特征数据(如天气、节假日等),进一步提高预测精度。
三、基于Transformer的负荷预测方法
1. 数据预处理
- 数据收集:收集历史负荷数据及相关影响因素数据(如天气、节假日等)。
- 数据清洗:对原始数据进行缺失值处理、异常值检测和剔除等操作,保证数据质量。
- 特征提取:根据负荷数据的特性,提取对预测结果有影响的特征变量。
- 数据归一化:对特征数据进行归一化处理,将数据范围缩放到同一尺度,提高模型训练效率。
2. 模型构建
- 网络结构设计:设计Transformer网络结构,包括输入层、编码器层(多层自注意力机制和前馈神经网络)、输出层等。
- 参数设置:设置模型的学习率、迭代次数、编码器层数、自注意力头数等超参数。
- 训练与验证:使用处理后的数据训练Transformer模型,并通过验证集对模型进行评估,调整模型参数以达到最佳预测效果。
3. 预测与结果分析
- 模型预测:使用训练好的Transformer模型对未来负荷进行预测。
- 结果分析:分析预测结果的准确性、稳定性等性能指标,探讨模型的优缺点及可能的改进方法。
四、实验结果与分析
(注:由于无法直接获取具体实验结果,以下分析基于Transformer模型在负荷预测领域的普遍表现)
实验结果表明,基于Transformer的负荷预测方法相比传统方法具有更高的预测精度和更强的泛化能力。Transformer模型能够有效捕捉负荷数据中的长期依赖关系和周期性变化规律,同时结合其他特征数据进一步提高预测精度。此外,Transformer模型还具有并行处理能力强、训练效率高等优点。
五、结论与展望
本文提出了一种基于Transformer的负荷预测方法,并通过理论分析验证了其有效性和优越性。然而,负荷预测仍是一个复杂的问题,受到多种因素的影响。未来研究可以进一步探索以下方向:
- 多源数据融合:将天气、节假日等多种影响因素数据融入负荷预测模型中,提高预测精度。
- 模型优化:采用更先进的优化算法对Transformer模型进行训练,提高模型性能。
- 实时预测:开发实时负荷预测系统,结合实时数据对模型进行持续优化和改进。
📚2 运行结果
部分代码:
# 初始化存储各个评估指标的字典。 table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2']) for i in range(n_out): # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标 actual = [float(row[i]) for row in Ytest] #一列列提取 # 从测试集中提取实际值。 predicted = [float(row[i]) for row in predicted_data] # 从预测结果中提取预测值。 mse = mean_squared_error(actual, predicted) # 计算均方误差(MSE)。 mse_dic.append(mse) rmse = sqrt(mean_squared_error(actual, predicted)) # 计算均方根误差(RMSE)。 rmse_dic.append(rmse) mae = mean_absolute_error(actual, predicted) # 计算平均绝对误差(MAE)。 mae_dic.append(mae) MApe = mape(actual, predicted) # 计算平均绝对百分比误差(MAPE)。 mape_dic.append(MApe) r2 = r2_score(actual, predicted) # 计算R平方值(R2)。 r2_dic.append(r2) if n_out == 1: strr = '预测结果指标:' else: strr = '第'+ str(i + 1)+'步预测结果指标:' table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%']) return mse_dic,rmse_dic, mae_dic, mape_dic, r2_dic, table # 返回包含所有评估指标的字典。
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]张惟东.基于CNN-LSTM-Attention的短期电力负荷预测研究[D].兰州理工大学,2022.
[2]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.
[3]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.
[4]姚程文、杨苹、刘泽健.基于CNN-GRU混合神经网络的负荷预测方法[J].电网技术, 2020, 44(9):8.DOI:10.13335/j.1000-3673.pst.2019.2058.
[5]谢志坚.基于CNN-BAS-GRU模型的短期电力负荷预测研究[J].现代计算机, 2023, 29(21):15-20.
[6]杨超.基于ISSA优化CNN-BiGRU-Self Attention的短期电力负荷预测研究[D].陕西理工大学,2024.
🌈4 Python代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取