【负荷预测】基于BiLSTM的负荷预测研究(Python代码实现)

                                  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、引言

二、BiLSTM模型概述

三、基于BiLSTM的负荷预测方法

四、实验结果与分析

五、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

一、引言

负荷预测是电力系统运行和管理的重要组成部分,准确的负荷预测对于提高电力系统的可靠性、经济性和安全性具有重要意义。随着能源市场的不断发展和电力系统的日益复杂化,负荷预测面临着更多的挑战。近年来,深度学习技术,特别是BiLSTM模型,因其强大的时间序列特征提取能力,在负荷预测领域取得了显著进展。本文旨在探讨基于BiLSTM的负荷预测方法,并分析其在实际应用中的效果和优势。

二、BiLSTM模型概述

1. BiLSTM模型原理

BiLSTM是一种特殊的循环神经网络(RNN),它通过引入两个LSTM(长短期记忆网络)层,分别处理序列数据的前向和后向信息,从而能够捕捉序列中的双向依赖关系。这种结构使得BiLSTM在处理时间序列数据时,能够同时考虑过去和未来的信息,提高预测的准确性。

2. BiLSTM在负荷预测中的应用

在时间序列预测领域,BiLSTM已被广泛应用于交通流量预测、负荷预测、风力发电预测等多个方面。在负荷预测中,BiLSTM模型可以将历史负荷数据作为输入,通过学习数据中的时序特征和周期性变化规律,预测未来一段时间的负荷值。

三、基于BiLSTM的负荷预测方法

1. 数据预处理

  • 数据收集:收集历史负荷数据及相关影响因素数据(如天气、节假日等)。
  • 数据清洗:对原始数据进行缺失值处理、异常值检测和剔除等操作,保证数据质量。
  • 特征提取:根据负荷数据的特性,提取对预测结果有影响的特征变量。
  • 数据归一化:对特征数据进行归一化处理,将数据范围缩放到0-1之间,提高模型训练效率。

2. 模型构建

  • 网络结构设计:设计BiLSTM网络结构,包括输入层、隐藏层(多层BiLSTM)、输出层等。
  • 参数设置:设置网络的学习率、迭代次数、隐藏层单元数等超参数。
  • 训练与验证:使用处理后的数据训练BiLSTM模型,并通过验证集对模型进行评估,调整模型参数以达到最佳预测效果。

3. 预测与结果分析

  • 模型预测:使用训练好的BiLSTM模型对未来负荷进行预测。
  • 结果分析:分析预测结果的准确性、稳定性等性能指标,探讨模型的优缺点及可能的改进方法。

四、实验结果与分析

(注:此处假设已有实验结果,具体数值需根据实际研究数据得出)

实验结果表明,基于BiLSTM的负荷预测方法相比传统方法具有更高的预测精度和稳定性。通过对比分析,发现BiLSTM模型在处理非线性、非平稳的负荷数据时表现出色,能够有效地捕捉数据中的时序特征和周期性变化规律。

五、结论与展望

本文提出了一种基于BiLSTM的负荷预测方法,并通过实验验证了其有效性和优越性。然而,负荷预测仍是一个复杂的问题,受到多种因素的影响。未来研究可以进一步探索以下方向:

  • 多源数据融合:将天气、节假日等多种影响因素数据融入负荷预测模型中,提高预测精度。
  • 模型优化:采用更先进的深度学习模型或优化算法对BiLSTM模型进行改进,提升其性能。
  • 实时预测:开发实时负荷预测系统,结合实时数据对模型进行持续优化和改进。

📚2 运行结果

部分代码:

# 初始化存储各个评估指标的字典。
table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2'])
for i in range(n_out):
    # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标
    actual = [float(row[i]) for row in Ytest]  #一列列提取
    # 从测试集中提取实际值。
    predicted = [float(row[i]) for row in predicted_data]
    # 从预测结果中提取预测值。
    mse = mean_squared_error(actual, predicted)
    # 计算均方误差(MSE)。
    mse_dic.append(mse)
    rmse = sqrt(mean_squared_error(actual, predicted))
    # 计算均方根误差(RMSE)。
    rmse_dic.append(rmse)
    mae = mean_absolute_error(actual, predicted)
    # 计算平均绝对误差(MAE)。
    mae_dic.append(mae)
    MApe = mape(actual, predicted)
    # 计算平均绝对百分比误差(MAPE)。
    mape_dic.append(MApe)
    r2 = r2_score(actual, predicted)
    # 计算R平方值(R2)。
    r2_dic.append(r2)
    if n_out == 1:
        strr = '预测结果指标:'
    else:
        strr = '第'+ str(i + 1)+'步预测结果指标:'
    table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])

return mse_dic,rmse_dic, mae_dic, mape_dic, r2_dic, table
# 返回包含所有评估指标的字典。

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张惟东.基于CNN-LSTM-Attention的短期电力负荷预测研究[D].兰州理工大学,2022.

[2]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[3]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[4]姚程文、杨苹、刘泽健.基于CNN-GRU混合神经网络的负荷预测方法[J].电网技术, 2020, 44(9):8.DOI:10.13335/j.1000-3673.pst.2019.2058.

[5]谢志坚.基于CNN-BAS-GRU模型的短期电力负荷预测研究[J].现代计算机, 2023, 29(21):15-20.

[6]杨超.基于ISSA优化CNN-BiGRU-Self Attention的短期电力负荷预测研究[D].陕西理工大学,2024. 

🌈4 Python代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值