【负荷预测】基于BiLSTM-Attention的负荷预测研究(Python代码实现)

              💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于BiLSTM-Attention的负荷预测研究

一、研究背景与意义

负荷预测是电力系统中一项至关重要的任务,它对于电力系统的规划、调度和运维具有重要意义。然而,由于负荷数据往往呈现出高度的非线性和非平稳性,传统的预测方法往往难以达到理想的预测效果。因此,研究基于深度学习技术的负荷预测方法,特别是结合BiLSTM(双向长短期记忆网络)和Attention(注意力机制)的模型,旨在提高负荷预测的精度和鲁棒性。

二、BiLSTM-Attention模型概述

  1. BiLSTM(双向长短期记忆网络)
    • BiLSTM是LSTM的一种变体,通过同时考虑序列的正向和反向信息,能够更全面地捕捉时间序列数据中的长期依赖关系。
    • 在负荷预测中,BiLSTM可以有效地利用历史负荷数据中的时间依赖性,提高预测的准确性。
  2. Attention(注意力机制)
    • Attention机制通过为序列中的不同部分分配不同的权重,使得模型能够更加关注对预测结果影响较大的部分。
    • 在负荷预测中,Attention机制可以帮助模型动态地调整不同时间段或特征的重要性,进一步提高预测精度。

三、模型构建与实现

  1. 数据预处理
    • 从电力系统中获取历史负荷数据及相关影响因素(如天气、节假日等)。
    • 对数据进行清洗,处理缺失值、异常值等问题,确保数据的完整性和准确性。
    • 将数据归一化,将不同量纲的数据转换到同一尺度,以便于后续处理。
  2. 模型设计
    • 构建BiLSTM层,利用其双向性捕捉时间序列数据中的长期依赖关系。
    • 在BiLSTM层之后引入Attention层,动态调整不同时间段或特征的重要性。
    • 设计输出层,将Attention层的输出转换为最终的预测值。
  3. 模型训练
    • 使用准备好的数据集对模型进行训练,通过反向传播算法和梯度下降法优化模型参数。
    • 在训练过程中,可以采用交叉验证等方法避免过拟合,同时调整网络结构和超参数以优化模型性能。
  4. 预测与评估
    • 使用测试集对训练好的模型进行预测,并计算预测误差等性能指标。
    • 评估模型在不同场景下的应用效果,如工作日、节假日等。

四、实验结果与分析

通过实验验证,基于BiLSTM-Attention的负荷预测模型在多个评估指标(如MSE、RMSE、MAE等)上均表现出色。该模型能够有效地捕捉负荷数据中的时间依赖性,并通过Attention机制动态调整不同特征的重要性,从而提高预测的准确性和鲁棒性。

五、结论与展望

基于BiLSTM-Attention的负荷预测模型为电力系统的负荷预测提供了一种新的思路和方法。未来研究可以进一步探索模型参数的优化、不同数据源的融合以及模型的可解释性等问题,以提高负荷预测的精度和稳定性。同时,随着深度学习技术的不断发展,该模型有望在更多领域得到应用和推广。

📚2 运行结果

部分代码:

# 初始化存储各个评估指标的字典。
table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2'])
for i in range(n_out):
    # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标
    actual = [float(row[i]) for row in Ytest]  #一列列提取
    # 从测试集中提取实际值。
    predicted = [float(row[i]) for row in predicted_data]
    # 从预测结果中提取预测值。
    mse = mean_squared_error(actual, predicted)
    # 计算均方误差(MSE)。
    mse_dic.append(mse)
    rmse = sqrt(mean_squared_error(actual, predicted))
    # 计算均方根误差(RMSE)。
    rmse_dic.append(rmse)
    mae = mean_absolute_error(actual, predicted)
    # 计算平均绝对误差(MAE)。
    mae_dic.append(mae)
    MApe = mape(actual, predicted)
    # 计算平均绝对百分比误差(MAPE)。
    mape_dic.append(MApe)
    r2 = r2_score(actual, predicted)
    # 计算R平方值(R2)。
    r2_dic.append(r2)
    if n_out == 1:
        strr = '预测结果指标:'
    else:
        strr = '第'+ str(i + 1)+'步预测结果指标:'
    table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])

return mse_dic,rmse_dic, mae_dic, mape_dic, r2_dic, table
# 返回包含所有评估指标的字典。

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张惟东.基于CNN-LSTM-Attention的短期电力负荷预测研究[D].兰州理工大学,2022.

[2]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[3]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[4]姚程文、杨苹、刘泽健.基于CNN-GRU混合神经网络的负荷预测方法[J].电网技术, 2020, 44(9):8.DOI:10.13335/j.1000-3673.pst.2019.2058.

[5]谢志坚.基于CNN-BAS-GRU模型的短期电力负荷预测研究[J].现代计算机, 2023, 29(21):15-20.

[6]杨超.基于ISSA优化CNN-BiGRU-Self Attention的短期电力负荷预测研究[D].陕西理工大学,2024. 

🌈4 Python代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值