二项分布,柏松分布和正态分布

主要介绍以下三种相互关联的概率分布:

离散型随机变量的概率分布:二项分布,柏松分布

连续性随机变量的概率分布:正态分布。

一,二项分布

满足条件:

1)每次试验中事件只有两种结果:事件发生或者不发生,如硬币正面或反面,患病或没患病;

2)每次试验中事件发生的概率是相同的,每次抛硬币正面和反面的概率都为0.5;每次投篮命中率都为0.6等等。

3)n次试验的事件相互之间独立。

特征:

1,当p较小且n不大时,分布是偏倚的。但随着n的增大,分布逐渐趋于对称。

2,当p约等于1-p,且n趋近于无穷大时,二项分布的极限分布为正态分布。当p很小,且n很大时,二项分布的极限分布为柏松分布

概率分布函数为:

也为:

若随机变量满x(或者k)=0,1,2,3,....满足该分布函数,则称随机变量x(或者k)服从参数为n和p的二项分布,记为:x(k)~B(n, p)。

 

 

应用:判断n次独立重复事件中成功或者失败次数为k的概率,其中成功的概率为p,失败的概率为1-p。

 

二,柏松分布

由二项分布推导而来。柏松分布是二项分布的极限情况,即二项分布的伯努利试验中,如果试验次数n很大,二项分布的概率p很小,且乘积λ= np比较适中,则事件出现的次数的概率可以用泊松分布来逼近。

 

推导例子:如下图,

满足条件:

a, 事件发生为小概率事件

b, 事件独立发生

c, 事件发生的概率稳定

特征:

1,柏松分布的一大特征为 平均数等于方差等于lamda,即 。 

2,是柏松分布的唯一参数,当大于等于20时,接近于正态分布,可以用正态分布来处理柏松分布问题。

 

概率分布函数为:

若随机变量满x(或者k)=0,1,2,3,....满足该分布函数,则称随机变量x(或者k)服从参数为的柏松分布,记为:x(k)~P()。

 

 

应用:观察事物平均发生次的条件下,实际发生k次的概率P。

 

三,正态分布

正态分布是一种重要的连续随机变量的概率分布。中心极限定理表明,在观测数据非常大的时候,具有独立分布的独立随机变量的观测样本的平均值是收敛于正态分布的。

不少随机变量的概率分布在一定条件下以正太分布为极限分布,如二项分布和柏松分布(见上文)。

满足条件:

随机变量受到若干独立因素共同影响,且每个因素不能产生支配性的作用。

特征:

1,正态分布是关于x = μ对称的。

2,正态分布曲线有两个拐点,分别在离均值一个标准差的位置,为x=μ-σ和x=μ+σ。

3,对于任意的正态偏差X,Z = ( X - μ ) / σ是一个标准正态偏差。

4,对于特定的期望值和方差,正态分布是具有最大熵的连续分布。

5,由于对于离期望值好几个标准差范围之外的取值,它们的概率趋近于0。

6,正态分布概率的覆盖范围遵循68-95-99.7的规定,这个规定又称为3-sigma规定。也就是说在距离均值一个标准差的范围内的取值的概率大概是68%,在两个标准差范围大概是95,在三个标准差范围大概是99.7%。 

 

概率分布函数为:

 

应用:

⒈ 估计频数分布 一个服从正态分布的变量只要知道其均数与标准差就可根据公式即可估计任意取值范围内频数比例。 

⒉ 制定参考值范围

⑴正态分布法 适用于服从正态(或近似正态)分布指标以及可以通过转换后服从正态分布的指标。

⑵百分位数法 常用于偏态分布的指标。表3-1中两种方法的单双侧界值都应熟练掌握。

⒊ 质量控制:为了控制实验中的测量(或实验)误差,常以 作为上、下警戒值,以 作为上、下控制值。这样做的依据是:正常情况下测量(或实验)误差服从正态分布。

⒋ 正态分布是许多统计方法的理论基础。检验、方差分析、相关和回归分析等多种统计方法均要求分析的指标服从正态分布。许多统计方法虽然不要求分析指标服从正态分布,但相应的统计量在大样本时近似正态分布,因而大样本时这些统计推断方法也是以正态分布为理论基础的。

### 不同概率分布的概念及应用场景 #### 泊松分布 泊松分布是一种用于表示单位时间(或其他固定区间)内某事件发生的次数的概率分布[^1]。该分布适用于描述稀有事件的发生频率,即在给定的时间间隔或空间区域内,某个特定事件发生k次的概率。 - **概念**: 如果一个随机变量X服从参数为λ的泊松分布,则其概率质量函数定义如下: \[ P(X=k)=\frac{\lambda^{k}e^{-\lambda}}{k!} \] - **应用领域** - 生物学:预测细胞分裂的数量。 - 经济学:分析客户到达商店的人数。 - 计算机网络:评估每秒接收到的数据包数量。 #### 二项分布 当试验只有两种可能的结果——成功或失败,并且每次实验都是相互独立的情况下,可以用二项分布来建模成功的次数n次独立试验中有多少次成功的概率。 - **概念**: 设p代表单次试验的成功概率,在N次重复伯努利试验中恰好获得K次成功的概率由下面公式给出: \[ f(k; n, p)={n \choose k}p^k(1-p)^{n-k},\quad k=0,\ldots,n. \] - **应用实例** - 质量控制:检测一批产品中有缺陷的比例。 - 市场调研:估算选民支持候选人的比例。 - 游戏理论:计算抛硬币正面朝上的可能性。 #### Beta 分布 Beta 分布通常作为贝叶斯推理中的先验分布使用,尤其是在处理具有未知成功率的任务时非常有用。它能够很好地捕捉到不确定性程度的变化规律。 - **概念**: 形状参数α>0β>0决定了Beta 分布的具体形式,其概率密度函数表达式为: \[ B(x;\alpha ,\beta )=\frac {x^{\alpha -1}(1-x)^{\beta -1}}{\mathrm {B} (\alpha ,\beta )} \] 其中$\mathrm {B}$ 表示Beta 函数。 - **实际用途** - 自然语言处理:估计单词出现的概率。 - 推荐系统:调整推荐列表以适应用户的偏好变化。 - A/B 测试:衡量新旧版本之间的性能差异。 综上所述,这三种分布各有特点,在不同场景下发挥着重要作用。选择合适的分布对于提高数据分析准确性至关重要。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值