线性代数【五】向量(2):向量组的秩,向量内积、正交,正交规范化,向量空间

本节为线性代数复习笔记的第五部分,向量(2),主要包括:向量组的秩,向量内积、正交、模,施密特标准正交化(正交规范化),向量空间以及坐标变换公式。

1. 向量组的秩

  向量组 α 1 ⃗ , α 2 ⃗ , . . . , α s ⃗ \vec{\alpha_1},\vec{\alpha_2},...,\vec{\alpha_s} α1 ,α2 ,...,αs 的极大线性无关组中所含有向量的个数称为向量组的秩,其中等价向量组必然等秩,但向量组等秩不一定是等价向量组,且有矩阵的秩=行向量组秩=列向量组秩。
  若A经过初等行变换变为B,则A的行向量组合B的行向量组等价,且A和B任何列向量组具有相同的线性相关性。
  设有向量组 β 1 ⃗ , β 2 ⃗ , . . . , β t ⃗ \vec{\beta_1},\vec{\beta_2},...,\vec{\beta_t} β1 ,β2 ,...,βt α 1 ⃗ , α 2 ⃗ , . . . , α s ⃗ \vec{\alpha_1},\vec{\alpha_2},...,\vec{\alpha_s} α1 ,α2 ,...,αs ,若 β i \beta_i βi均可由 α 1 ⃗ , α 2 ⃗ , . . . , α s ⃗ \vec{\alpha_1},\vec{\alpha_2},...,\vec{\alpha_s} α1 ,α2 ,...,αs 线性表出,则: r [ β 1 ⃗ , β 2 ⃗ , . . . , β t ⃗ ] r[\vec{\beta_1},\vec{\beta_2},...,\vec{\beta_t}] r[β1 ,β2 ,...,βt ] ≤ \leq r [ α 1 ⃗ , α 2 ⃗ , . . . , α s ⃗ ] r[\vec{\alpha_1},\vec{\alpha_2},...,\vec{\alpha_s}] r[α1 ,α2 ,...,αs ]

2. 向量组内积,向量正交,模

  设 α T = [ α 1 ⃗ , α 2 ⃗ , . . . , α n ⃗ ] T \alpha^T=[\vec{\alpha_1},\vec{\alpha_2},...,\vec{\alpha_n}]^T αT=[α1 ,α2 ,...,αn ]T β = [ β 1 ⃗ , β 2 ⃗ , . . . , β n ⃗ ] T \beta=[\vec{\beta_1},\vec{\beta_2},...,\vec{\beta_n}]^T β=[β1 ,β2 ,...,βn ]T,则 α T β \alpha^T\beta αTβ称为向量组的内积,记为 ( α , β ) = α T β (\alpha,\beta)=\alpha^T\beta (α,β)=αTβ
  当 α T β = 0 \alpha^T\beta=0 αTβ=0,称两个向量组正交。
  向量组的模记为 ∣ ∣ α ∣ ∣ = Σ i = 1 n α i 2 ||\alpha||=\sqrt{\Sigma_{i=1}^n\alpha_i^2} α=Σi=1nαi2 ,模为1则向量为单位向量。

3. 标准正交向量组

  对于向量组 α 1 ⃗ , α 2 ⃗ , . . . , α n ⃗ \vec{\alpha_1},\vec{\alpha_2},...,\vec{\alpha_n} α1 ,α2 ,...,αn ,若 i = j , α i T α j = 1 i=j,\alpha_i^T\alpha_j=1 i=jαiTαj=1 i ≠ j , α i T α j = 0 i\neq j,\alpha_i^T\alpha_j=0 i=jαiTαj=0,则称向量组 α 1 ⃗ , α 2 ⃗ , . . . , α n ⃗ \vec{\alpha_1},\vec{\alpha_2},...,\vec{\alpha_n} α1 ,α2 ,...,αn 为标准/单位正交向量组。
  A是正交矩阵(方阵) ⇔ \Leftrightarrow A T A = E A^TA=E ATA=E ⇔ \Leftrightarrow A T = A − 1 A^T=A^{-1} AT=A1 ⇔ \Leftrightarrow A的行与列向量组皆为标准正交向量组
  若A是正交矩阵,则称 Y = A X Y=AX Y=AX为正交变换,不改变向量内积(成都和两两夹角不变)。
  对于正交矩阵A,若|A|=1,称A为特殊正交矩阵/旋转矩阵;若|A|=-1,称A为瑕旋转矩阵。

正交矩阵和正交变换还有很多有意思的性质~

4. 施密特标准正交化/正交规范化

  线性无关向量组 α 1 ⃗ , α 2 ⃗ , . . . , α n ⃗ \vec{\alpha_1},\vec{\alpha_2},...,\vec{\alpha_n} α1 ,α2 ,...,αn 的标准正交化公式为:
β 1 = α 1 β 2 = α 2 − ( α 2 , β 1 ) β 1 , β 1 β 1 . . . β n = α n − ( α n , β n − 1 ) β n − 1 , β n − 1 β n − 1 − . . . − ( α n , β 1 ) β 1 , β 1 β 1 \beta_1=\alpha_1\\\beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{\beta_1,\beta_1}\beta_1\\...\\\beta_n=\alpha_n-\frac{(\alpha_n,\beta_{n-1})}{\beta_{n-1},\beta_{n-1}}\beta_{n-1}-...-\frac{(\alpha_n,\beta_1)}{\beta_1,\beta_1}\beta_1 β1=α1β2=α2β1,β1(α2,β1)β1...βn=αnβn1,βn1(αn,βn1)βn1...β1,β1(αn,β1)β1
  得到的 β 1 ⃗ , β 2 ⃗ , . . . , β n ⃗ \vec{\beta_1},\vec{\beta_2},...,\vec{\beta_n} β1 ,β2 ,...,βn 是正交向量组,将 β 1 ⃗ , β 2 ⃗ , . . . , β n ⃗ \vec{\beta_1},\vec{\beta_2},...,\vec{\beta_n} β1 ,β2 ,...,βn 单位化得: η i = β i ∣ ∣ β i ∣ ∣ \eta_i=\frac{\beta_i}{||\beta_i||} ηi=βiβi,这样即可得到标准正交向量组。
   ( α 2 , β 1 ) β 1 , β 1 \frac{(\alpha_2,\beta_1)}{\beta_1,\beta_1} β1,β1(α2,β1)这个计算本质上是将 α 2 \alpha_2 α2投影到 α 1 \alpha_1 α1方向上的投影系数,然后做向量的相减,得到方向上与 α 1 \alpha_1 α1正交的新向量。

5. 向量空间

  若 ξ 1 ⃗ , ξ 2 ⃗ , . . . , ξ n ⃗ \vec{\xi_1},\vec{\xi_2},...,\vec{\xi_n} ξ1 ,ξ2 ,...,ξn R n R^n Rn中的线性无关向量组,且任一向量 α ⃗ ∈ R n \vec{\alpha}\in R^n α Rn均可由 ξ 1 ⃗ , ξ 2 ⃗ , . . . , ξ n ⃗ \vec{\xi_1},\vec{\xi_2},...,\vec{\xi_n} ξ1 ,ξ2 ,...,ξn 线性表出,则称 ξ 1 ⃗ , ξ 2 ⃗ , . . . , ξ n ⃗ \vec{\xi_1},\vec{\xi_2},...,\vec{\xi_n} ξ1 ,ξ2 ,...,ξn R n R^n Rn的一个基,其个数n称为该向量空间的维数。若有: α ⃗ = a 1 ξ 1 ⃗ + a 2 ξ 2 ⃗ + . . . + a n ξ n ⃗ \vec{\alpha}=a_1\vec{\xi_1}+a_2\vec{\xi_2}+...+a_n\vec{\xi_n} α =a1ξ1 +a2ξ2 +...+anξn ,则 ( a 1 , a 2 , . . . , a n ) (a_1,a_2,...,a_n) (a1,a2,...,an)称为向量 α ⃗ \vec{\alpha} α 在此向量空间的坐标。
  若 η 1 ⃗ , η 2 ⃗ , . . . , η n ⃗ \vec{\eta_1},\vec{\eta_2},...,\vec{\eta_n} η1 ,η2 ,...,ηn ξ 1 ⃗ , ξ 2 ⃗ , . . . , ξ n ⃗ \vec{\xi_1},\vec{\xi_2},...,\vec{\xi_n} ξ1 ,ξ2 ,...,ξn 为向量空间 R n R^n Rn的两个基,且:
[ η 1 ⃗ , η 2 ⃗ , . . . , η n ⃗ ] = [ ξ 1 ⃗ , ξ 2 ⃗ , . . . , ξ n ⃗ ] [ c 11 c 12 . . . c 1 n c 21 c 22 . . . c 2 n . . . . . . . . . . . . c n 1 c n 2 . . . c n n ] = [ ξ 1 ⃗ , ξ 2 ⃗ , . . . , ξ n ⃗ ] C [\vec{\eta_1},\vec{\eta_2},...,\vec{\eta_n}]=[\vec{\xi_1},\vec{\xi_2},...,\vec{\xi_n}]\left[\begin{matrix}c_{11}&c_{12}&...&c_{1n}\\c_{21}&c_{22}&...&c_{2n}\\...&...&...&...\\c_{n1}&c_{n2}&...&c_{nn}\end{matrix}\right]\\=[\vec{\xi_1},\vec{\xi_2},...,\vec{\xi_n}]C [η1 ,η2 ,...,ηn ]=[ξ1 ,ξ2 ,...,ξn ]c11c21...cn1c12c22...cn2............c1nc2n...cnn=[ξ1 ,ξ2 ,...,ξn ]C

称矩阵C为从 η \eta η ξ \xi ξ的过渡矩阵(必然是可逆矩阵),上述公式称为基变换公式
  若 α ⃗ = [ ξ 1 ⃗ , ξ 2 ⃗ , . . . , ξ n ⃗ ] x ⃗ = [ η 1 ⃗ , η 2 ⃗ , . . . , η n ⃗ ] y ⃗ \vec{\alpha}=[\vec{\xi_1},\vec{\xi_2},...,\vec{\xi_n}]\vec{x}=[\vec{\eta_1},\vec{\eta_2},...,\vec{\eta_n}]\vec{y} α =[ξ1 ,ξ2 ,...,ξn ]x =[η1 ,η2 ,...,ηn ]y ,且 [ η 1 ⃗ , η 2 ⃗ , . . . , η n ⃗ ] = [ ξ 1 ⃗ , ξ 2 ⃗ , . . . , ξ n ⃗ ] C [\vec{\eta_1},\vec{\eta_2},...,\vec{\eta_n}]=[\vec{\xi_1},\vec{\xi_2},...,\vec{\xi_n}]C [η1 ,η2 ,...,ηn ]=[ξ1 ,ξ2 ,...,ξn ]C,则 α ⃗ = [ ξ 1 ⃗ , ξ 2 ⃗ , . . . , ξ n ⃗ ] x ⃗ = [ η 1 ⃗ , η 2 ⃗ , . . . , η n ⃗ ] y ⃗ = [ ξ 1 ⃗ , ξ 2 ⃗ , . . . , ξ n ⃗ ] C y ⃗ \vec{\alpha}=[\vec{\xi_1},\vec{\xi_2},...,\vec{\xi_n}]\vec{x}=[\vec{\eta_1},\vec{\eta_2},...,\vec{\eta_n}]\vec{y}=[\vec{\xi_1},\vec{\xi_2},...,\vec{\xi_n}]C\vec{y} α =[ξ1 ,ξ2 ,...,ξn ]x =[η1 ,η2 ,...,ηn ]y =[ξ1 ,ξ2 ,...,ξn ]Cy ,即 x ⃗ = C y ⃗ , y ⃗ = C − 1 x ⃗ \vec{x}=C\vec{y},\vec{y}=C^{-1}\vec{x} x =Cy y =C1x ,称为坐标变换公式。这里要注意区分是从哪一个坐标到哪一个坐标。


欢迎扫描二维码关注微信公众号 深度学习与数学   [每天获取免费的大数据、AI等相关的学习资源、经典和最新的深度学习相关的论文研读,算法和其他互联网技能的学习,概率论、线性代数等高等数学知识的回顾]
在这里插入图片描述

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值