数值分析(5)-分段低次插值和样条插值

整理一下数值分析的笔记~
目录:

1. 误差
2. 多项式插值与样条插值(THIS)
3. 函数逼近
4. 数值积分与数值微分
5. 线性方程组的直接解法
6. 线性方程组的迭代解法
7. 非线性方程求根
8. 特征值和特征向量的计算
9. 常微分方程初值问题的数值解

1. 分段低次插值

1.1 高次插值的龙格现象

  龙格现象就是插值多项式不收敛现象,节点(插值多项式的次数)增加不会带来精度的改善,甚至可能增加误差。

1.2 分段低次插值

  插值时先把整个区间分成若干个小区间,每个区间上作低次插值,拼一个分段函数作插值函数。优点诸多但是缺点时节点处导数值不连续,这就产生了样条插值。

2. 三次样条插值

2.1 样条曲线的特点
  • 点点通过 → \rarr 插值

  • 光顺

  • 计算简单

  • (对于低阶样条)保凸

2.2 三次样条

定义:设 a = x 0 &lt; x 1 &lt; . . . &lt; x n = b a=x_0 &lt; x_1&lt;...&lt;x_n=b a=x0<x1<...<xn=b,函数 S ( x ) ∈ C 2 [ a , b ] S(x) \in C^2[a,b] S(x)C2[a,b],且在每个 [ x i , x i + 1 ] [x_i,x_{i+1}] [xi,xi+1]上为三次多项式,同时满足 S ( x i ) = f ( x i ) , ( i = 0 , 1 , . . . , n ) S(x_i)=f(x_i),(i=0,1,...,n) S(xi)=f(xi),(i=0,1,...,n),则称f为三次样条插值函数。

{三次样条与分段Hermite插值的根本区别在于其自身光滑除了端点外不需要知道f的导数值}

若S为f的三次样条插值函数:

S ( x ) = { S 1 ( x ) , x ∈ [ x 0 , x 1 ] S 2 ( x ) , x ∈ [ x 1 , x 2 ] . . . S n ( x ) , x ∈ [ x n − 1 , x n ] S(x)=\begin{cases} S_1(x),&amp;x \in [x_0,x_1]\\ S_2(x),&amp;x \in [x_1,x_2] \\ ...\\ S_n(x), &amp;x \in [x_{n-1},x_n] \end{cases} S(x)=S1(x),S2(x),...Sn(x),x[x0,x1]x[x1,x2]x[xn1,xn]

S i ( x ) = a i 0 + a i 1 x + a i 2 x 2 + a i 3 x 3 , i = 1 , 2 , . . . , n S_i(x)=a_{i0}+a_{i1}x+a_{i2}x^2+a_{i3}x^3,i=1,2,...,n Si(x)=ai0+ai1x+ai2x2+ai3x3,i=1,2,...,n,也就是共有4n个待定系数,而已知条件只有4n-2个,即:

i = 0 , 1 , 2 , . . . , n 时 , S ( x i ) = f ( x i ) i = 1 , 2 , . . . , n − 1 时 , S ( x i − ) = S ( x i + ) , S ′ ( x i − ) = S ′ ( x i + ) , S ′ ′ ( x i − ) = S ′ ′ ( x i + ) i=0,1,2,...,n时,S(x_i)=f(x_i)\\ i=1,2,...,n-1时,S(x_i^-)=S(x_i^+),\\S&#x27;(x_i^-)=S&#x27;(x_i^+),\\S&#x27;&#x27;(x_i^-)=S&#x27;&#x27;(x_i^+) i=0,1,2,...,nS(xi)=f(xi)i=1,2,...,n1S(xi)=S(xi+),S(xi)=S(xi+)S(xi)=S(xi+)

还需要两个才能确定最终的系数,通常是在区间端点a,b上各加一个条件即边界条件,由实际问题给出,常用的有三种类型:

  • 给定两端点f(x)的一阶导数值 S ′ ( x 0 ) = f ′ ( x 0 ) , S ′ ( x n ) = f ′ ( x n ) S&#x27;(x_0)=f&#x27;(x_0),S&#x27;(x_n)=f&#x27;(x_n) S(x0)=f(x0),S(xn)=f(xn)

  • 给定两端点f(x)的二阶导数值 S ′ ′ ( x 0 ) = f ′ ′ ( x 0 ) , S ′ ′ ( x n ) = f ′ ′ ( x n ) S&#x27;&#x27;(x_0)=f&#x27;&#x27;(x_0),S&#x27;&#x27;(x_n)=f&#x27;&#x27;(x_n) S(x0)=f(x0),S(xn)=f(xn)

  • f具有周期性,即: S ( x 0 + ) = S ( x n − ) , S ′ ( x 0 + ) = S ′ ( x n − ) , S ′ ′ ( x 0 + ) = S ′ ′ ( x n − ) S(x_0^+)=S(x_n^-),S&#x27;(x_0^+)=S&#x27;(x_n^-),S&#x27;&#x27;(x_0^+)=S&#x27;&#x27;(x_n^-) S(x0+)=S(xn),S(x0+)=S(xn),S(x0+)=S(xn)

但是通过4n个方程得到4n个待定参数也只是理论上可行,实际计算量太大,由此提出两种简单的构造方法:

2.3 三转角法(从样条函数的一阶导数出发)

假定 S ′ ( x j ) = m j ( j = 0 , . . . , n ) S&#x27;(x_j)=m_j(j=0,...,n) S(xj)=mj(j=0,...,n),根据分段三次埃尔米特插值多项式:

S ( x ) = ∑ j = 0 n [ f j α j ( x ) + m j β j ( x ) ] , 其 中 α j ( x ) 和 β j ( x ) 为 三 次 埃 尔 米 塔 插 值 基 函 数 S(x)=\sum_{j=0}^n[f_j\alpha_j(x)+m_j\beta_j(x)],\\ 其中\alpha_j(x)和\beta_j(x)为三次埃尔米塔插值基函数 S(x)=j=0n[fjαj(x)+mjβj(x)],αj(x)βj(x)

由插值条件,连续性条件和边界条件可得关于 m j m_j mj的三对角方程组,求出 m j m_j mj,得到三次样条插值函数。

2.4 三弯矩法(从样条函数的二阶导数出发)

S在 [ x i − 1 , x i ] [x_{i-1},x_i] [xi1,xi]上为三次多项式,所以其二阶导数必为一次式。

设S(x)在节点 x i x_i xi处的二阶导数为: S ′ ′ ( x i ) = M i ( i = 0 , 1 , . . . , n ) S&#x27;&#x27;(x_i)=M_i(i=0,1,...,n) S(xi)=Mi(i=0,1,...,n),则 s ′ ′ ( x ) s&#x27;&#x27;(x) s(x)在此小区间上是x的线性函数,且因为 S ′ ′ ( x i − 1 ) = M i − 1 , S ′ ′ ( x i ) = M i S&#x27;&#x27;(x_{i-1})=M_{i-1},S&#x27;&#x27;(x_{i})=M_{i} S(xi1)=Mi1,S(xi)=Mi,用线性插值可得:

S i ′ ′ ( x ) = M i − 1 x − x i x i − 1 − x i + M i x − x i − 1 x i − x i − 1 , x ∈ [ x i − 1 , x i ] 记 h i = x i − x i − 1 , 有 S ′ ′ ( x ) = M i − 1 x i − x h i + M i x − x i − 1 h i 连 续 两 次 积 分 得 S i ( x ) = M i − 1 ( x i − x ) 3 6 h i + M i ( x − x i − 1 ) 3 6 h i + A i ( x i − x ) + B i ( x − x i − 1 ) 由 于 S i ( x i − 1 ) = f ( x i − 1 ) = y i − 1 且 S i ( x i ) = f ( x i ) = y i 得 : S i ( x i − 1 ) = 1 6 M i − 1 h i 2 + A i h i = y i − 1 S i ( x i ) = 1 6 M i h i 2 + B i h i = y i 得 : A i = 1 h i ( y i − 1 + 1 6 M i − 1 h i 2 ) B i = 1 h i ( y i + 1 6 M i h i 2 ) 代 入 得 : S i ( x ) = M i − 1 ( x i − x ) 3 6 h i + M i ( x − x i − 1 ) 3 6 h i + 1 h i ( y i − 1 + 1 6 M i − 1 h i 2 ) ( x i − x ) + 1 h i ( y i + 1 6 M i h i 2 ) ( x − x i − 1 ) , x ∈ [ x i − 1 , x i ] 其 中 M 0 , M − 1 , . . . , M n 是 待 求 的 常 数 , 可 利 用 S ′ ( x i − 0 ) = S ′ ( x i + 0 ) 求 出 M i S_i&#x27;&#x27;(x)=M_{i-1}\frac{x-x_i}{x_{i-1}-x_i}+\\ M_i\frac{x-x_{i-1}}{x_i-x_{i-1}},x \in [x_{i-1},x_i]\\ 记h_i=x_i-x_{i-1},有\\ S&#x27;&#x27;(x)=M_{i-1}\frac{x_i-x}{h_i}+M_i\frac{x-x_{i-1}}{h_i}\\ 连续两次积分得\\ S_i(x)=M_{i-1}\frac{(x_i-x)^3}{6h_i}+M_i\frac{(x-x_{i-1})^3}{6h_i}+\\A_i(x_i-x)+B_i(x-x_{i-1})\\ 由于S_i(x_{i-1})=f(x_{i-1})=y_{i-1}且\\S_i(x_i)=f(x_i)=y_i\\ 得:S_i(x_{i-1})=\frac{1}{6}M_{i-1}h^2_i+A_ih_i=y_{i-1}\\S_i(x_i)=\frac{1}{6}M_ih_i^2+B_ih_i=y_i\\ 得:A_i=\frac{1}{h_i}\left(y_{i-1}+\frac{1}{6}M_{i-1}h_i^2\right)\\ B_i=\frac{1}{h_i}\left(y_{i}+\frac{1}{6}M_{i}h_i^2\right)\\ 代入得:\\ S_i(x)=M_{i-1}\frac{(x_i-x)^3}{6h_i}+M_i\frac{(x-x_{i-1})^3}{6h_i}+\\\frac{1}{h_i}\left(y_{i-1}+\frac{1}{6}M_{i-1}h_i^2\right)(x_i-x)+\\\frac{1}{h_i}\left(y_{i}+\frac{1}{6}M_{i}h_i^2\right)(x-x_{i-1}),x\in[x_{i-1},x_i]\\ 其中M_0,M-1,...,M_n是待求的常数,\\可利用S&#x27;(x_i-0)=S&#x27;(x_i+0)求出M_i Si(x)=Mi1xi1xixxi+Mixixi1xxi1x[xi1,xi]hi=xixi1,S(x)=Mi1hixix+Mihixxi1Si(x)=Mi16hi(xix)3+Mi6hi(xxi1)3+Ai(xix)+Bi(xxi1)Si(xi1)=f(xi1)=yi1Si(xi)=f(xi)=yiSi(xi1)=61Mi1hi2+Aihi=yi1Si(xi)=61Mihi2+Bihi=yiAi=hi1(yi1+61Mi1hi2)Bi=hi1(yi+61Mihi2)Si(x)=Mi16hi(xix)3+Mi6hi(xxi1)3+hi1(yi1+61Mi1hi2)(xix)+hi1(yi+61Mihi2)(xxi1),x[xi1,xi]M0,M1,...,MnS(xi0)=S(xi+0)Mi

由于:

S i ( x ) = M i − 1 ( x i − x ) 3 6 h i + M i ( x − x i − 1 ) 3 6 h i + 1 h i ( y i − 1 + 1 6 M i − 1 h i 2 ) ( x i − x ) + 1 h i ( y i + 1 6 M i h i 2 ) ( x − x i − 1 ) , x ∈ [ x i − 1 , x i ] 求 导 , S i ′ ( x ) = − M i − 1 ( x i − x ) 2 2 h i + M i ( x − x i − 1 ) 2 2 h i + ( y i − y i − 1 ) h i + h i 6 ( M i − M i − 1 ) S_i(x)=M_{i-1}\frac{(x_i-x)^3}{6h_i}+M_i\frac{(x-x_{i-1})^3}{6h_i}+\\ \frac{1}{h_i}\left(y_{i-1}+\frac{1}{6}M_{i-1}h_i^2\right)(x_i-x)+\\\frac{1}{h_i}\left(y_{i}+\frac{1}{6}M_{i}h_i^2\right)(x-x_{i-1}),x\in[x_{i-1},x_i]\\ 求导,S_i&#x27;(x)=-M_{i-1}\frac{(x_i-x)^2}{2h_i}+M_i\frac{(x-x_{i-1})^2}{2h_i}+\\\frac{(y_i-y_{i-1})}{h_i}+\frac{h_i}{6}(M_i-M_{i-1}) Si(x)=Mi16hi(xix)3+Mi6hi(xxi1)3+hi1(yi1+61Mi1hi2)(xix)+hi1(yi+61Mihi2)(xxi1),x[xi1,xi]Si(x)=Mi12hi(xix)2+Mi2hi(xxi1)2+hi(yiyi1)+6hi(MiMi1)

由此得:

S i ′ ( x i − 0 ) = h i 6 M i − 1 + h i 3 M i + y i − y i − 1 h i S i ′ ( x i − 1 + 0 ) = − h i 3 M i − 1 − h i 6 M i + y i − y i − 1 h i 得 S i + 1 ′ ( x i + 0 ) = − h i + 1 3 M i − h i + 1 6 M i + 1 + y i + 1 − y i h i + 1 S&#x27;_i(x_i-0)=\frac{h_i}{6}M_{i-1}+\frac{h_i}{3}M_i+\frac{y_i-y_{i-1}}{h_i}\\ S&#x27;_i(x_{i-1}+0)=-\frac{h_i}{3}M_{i-1}-\frac{h_i}{6}M_i+\frac{y_i-y_{i-1}}{h_i}\\ 得S&#x27;_{i+1}(x_{i}+0)=-\frac{h_{i+1}}{3}M_{i}-\frac{h_{i+1}}{6}M_{i+1}+\frac{y_{i+1}-y_{i}}{h_{i+1}} Si(xi0)=6hiMi1+3hiMi+hiyiyi1Si(xi1+0)=3hiMi16hiMi+hiyiyi1Si+1(xi+0)=3hi+1Mi6hi+1Mi+1+hi+1yi+1yi

因为 S i ′ ( x i − 0 ) = S i + 1 ′ ( x i + 0 ) S_i&#x27;(x_i-0)=S_{i+1}&#x27;(x_i+0) Si(xi0)=Si+1(xi+0)可以求出参数 M i − 1 , M i , M i + 1 M_{i-1},M_i,M_{i+1} Mi1,Mi,Mi+1的一个方程:

h i 6 M i − 1 + h i + h i + 1 3 M i + h i + 1 6 M i + 1 = y i + 1 − y i h i + 1 + y i − y i − 1 h i \frac{h_i}{6}M_{i-1}+\frac{h_i+h_{i+1}}{3}M_i+\frac{h_{i+1}}{6}M_{i+1}=\\\frac{y_{i+1}-y_i}{h_{i+1}}+\frac{y_{i}-y_{i-1}}{h_{i}} 6hiMi1+3hi+hi+1Mi+6hi+1Mi+1=hi+1yi+1yi+hiyiyi1

两边同乘 6 h i + h i + 1 \frac{6}{h_i+h_{i+1}} hi+hi+16,得方程:

h i h i + h i + 1 M i − 1 + 2 M i + h i + 1 h i + h i + 1 M i + 1 = 6 h i + h i + 1 ( f [ x i , x i + 1 ] − f [ x i − 1 , x i ] ) \frac{h_i}{h_i+h_{i+1}}M_{i-1}+2M_i+\frac{h_{i+1}}{h_i+h_{i+1}}M_{i+1}=\\\frac{6}{h_i+h_{i+1}}\left(f[x_i,x_{i+1}]-f[x_{i-1},x_i]\right) hi+hi+1hiMi1+2Mi+hi+hi+1hi+1Mi+1=hi+hi+16(f[xi,xi+1]f[xi1,xi])

令:

μ i = h i h i + h i + 1 λ i = h i + 1 h i + h i + 1 = 1 − μ i g i = 6 h i + h i + 1 ( f [ x i , x i + 1 ] − f [ x i − 1 , x i ] ) = 6 f [ x i − 1 , x i , x i + 1 ] \mu_i=\frac{h_i}{h_i+h_{i+1}}\\ \lambda_i=\frac{h_{i+1}}{h_i+h_{i+1}}=1-\mu_i\\ g_i=\frac{6}{h_i+h_{i+1}}\left(f[x_i,x_{i+1}]-f[x_{i-1},x_i]\right)\\=6f[x_{i-1},x_i,x_{i+1}] μi=hi+hi+1hiλi=hi+hi+1hi+1=1μigi=hi+hi+16(f[xi,xi+1]f[xi1,xi])=6f[xi1,xi,xi+1]

则方程可以简写为: μ i M i − 1 + 2 M i + λ i M i + 1 = g i , i = 1 , 2 , . . . , n − 1 \mu_iM_{i-1}+2M_i+\lambda_iM_{i+1}=g_i,i=1,2,...,n-1 μiMi1+2Mi+λiMi+1=gi,i=1,2,...,n1,也就是共有n-1个方程,下面分三种边界条件依次讨论:

2.4.1 第一种边界条件,已知插值区间两端的一阶导数值

μ i = h i h i + h i + 1 , λ i = h i h i + h i + 1 g i = 6 f [ x i − 1 , x i , x i + 1 ] , g 0 = 6 h 1 ( f [ x 0 , x 1 ] − y 0 ′ ) , g n = 6 y n ′ − f [ x n − 1 , x n ] \mu_i=\frac{h_i}{h_i+h_{i+1}}, \lambda_i=\frac{h_i}{h_i+h_{i+1}}\\ g_i=6f[x_{i-1},x_i,x_{i+1}],\\g_0=\frac{6}{h_1}(f[x_0,x_1]-y_0&#x27;),\\g_n=\frac{6}{y&#x27;_n-f[x_{n-1},x_n]} μi=hi+hi+1hi,λi=hi+hi+1higi=6f[xi1,xi,xi+1],g0=h16(f[x0,x1]y0),gn=ynf[xn1,xn]6

有三弯矩方程:

[ 2 1 μ 1 2 λ 1 . . . . . . . . . . . . . . . μ n − 1 2 λ n − 1 1 2 ] [ M 0 M 1 . . . M n − 1 M n ] = [ g 0 g 1 . . . g n − 1 g n ] \left[ \begin{matrix} 2 &amp; 1 &amp; &amp; &amp; \\ \mu_1 &amp; 2 &amp; \lambda_1 &amp; &amp; \\ ...&amp;...&amp;...&amp;...&amp;...\\ &amp; &amp; \mu_{n-1} &amp; 2 &amp; \lambda_{n-1} \\ &amp; &amp; &amp; 1 &amp; 2 \end{matrix} \right] \left[ \begin{matrix} M_0 \\ M_1 \\ ... \\ M_{n-1}\\ M_n \end{matrix} \right]= \left[ \begin{matrix} g_0 \\ g_1 \\ ... \\ g_{n-1}\\ g_n \end{matrix} \right] 2μ1...12...λ1...μn1...21...λn12M0M1...Mn1Mn=g0g1...gn1gn

2.4.2 第二种边界条件:已知插值区间两端的二阶导数值

有三弯矩矩阵:

[ 2 λ 1 μ 2 2 λ 2 . . . . . . . . . . . . . . . μ n − 2 2 λ n − 2 μ n − 1 2 ] [ M 1 M 2 . . . M n − 2 M n − 1 ] = [ g 1 − μ 1 y 0 ′ ′ g 2 . . . g n − 2 g n − 1 − λ n − 1 y n ′ ′ ] 且 有 自 然 边 界 条 件 : M 0 = M n = 0 \left[ \begin{matrix} 2 &amp; \lambda_1 &amp; &amp; &amp; \\ \mu_2 &amp; 2 &amp; \lambda_2 &amp; &amp; \\ ...&amp;...&amp;...&amp;...&amp;...\\ &amp; &amp; \mu_{n-2} &amp; 2 &amp; \lambda_{n-2} \\ &amp; &amp; &amp; \mu_{n-1} &amp; 2 \end{matrix} \right] \left[ \begin{matrix} M_1 \\ M_2 \\ ... \\ M_{n-2}\\ M_{n-1} \end{matrix} \right]= \left[ \begin{matrix} g_1-\mu_1y&#x27;&#x27;_0 \\ g_2 \\ ... \\ g_{n-2}\\ g_{n-1}-\lambda_{n-1}y_n&#x27;&#x27; \end{matrix} \right]\\ 且有自然边界条件:M_0=M_n=0 2μ2...λ12...λ2...μn2...2μn1...λn22M1M2...Mn2Mn1=g1μ1y0g2...gn2gn1λn1ynM0=Mn=0

2.4.3 第三种边界条件

有三弯矩矩阵:

[ 2 λ 1 μ 1 μ 2 2 λ 2 . . . . . . . . . . . . . . . μ n − 1 2 λ n − 1 λ n μ n 2 ] [ M 1 M 2 . . . M n − 1 M n ] = [ g 1 g 2 . . . g n − 1 g n ] \left[ \begin{matrix} 2 &amp; \lambda_1 &amp; &amp; &amp; \mu_1\\ \mu_2 &amp; 2 &amp; \lambda_2 &amp; &amp; \\ ...&amp;...&amp;...&amp;...&amp;...\\ &amp; &amp; \mu_{n-1} &amp; 2 &amp; \lambda_{n-1} \\ \lambda_n&amp; &amp; &amp; \mu_n &amp; 2 \end{matrix} \right] \left[ \begin{matrix} M_1 \\ M_2 \\ ... \\ M_{n-1}\\ M_n \end{matrix} \right]= \left[ \begin{matrix} g_1 \\ g_2 \\ ... \\ g_{n-1}\\ g_n \end{matrix} \right] 2μ2...λnλ12...λ2...μn1...2μnμ1...λn12M1M2...Mn1Mn=g1g2...gn1gn

值得注意的是,上面三种条件中的线性方程组的系数矩阵都是非奇异的,因此有唯一解,三次样条函数由边界条件唯一确定。

eg.设 f ( 0 ) = 0 , f ( 1 ) = 1 , f ( 2 ) = 0 , f ( 3 ) = 1 , f ′ ′ ( 0 ) = 1 , f ′ ′ ( 3 = 0 ) f(0)=0,f(1)=1,f(2)=0,f(3)=1,f&#x27;&#x27;(0)=1,f&#x27;&#x27;(3=0) f(0)=0,f(1)=1,f(2)=0,f(3)=1,f(0)=1,f(3=0),试求 f ( x ) f(x) f(x)在区间[0,3]上的三次样条函数S(x).

解:由 M 0 = y 0 ′ ′ , M n = y n ′ ′ M_0=y&#x27;&#x27;_0,M_n=y&#x27;&#x27;_n M0=y0,Mn=yn M 0 = f ′ ′ ( 0 ) = 1 , M 3 = f ′ ′ ( 3 ) = 0 M_0=f&#x27;&#x27;(0)=1,M_3=f&#x27;&#x27;(3)=0 M0=f(0)=1,M3=f(3)=0,构造差商表:

x i x_i xi f ( x i ) f(x_i) f(xi)一阶差商二阶差商
00
111
20-1-1
3111

由:

μ i = h i h i + h i + 1 λ i = h i + 1 h i + h i + 1 = 1 − μ i g i = 6 h i + h i + 1 ( f [ x i , x i + 1 ] − f [ x i − 1 , x i ] ) = 6 f [ x i − 1 , x i , x i + 1 ] \mu_i=\frac{h_i}{h_i+h_{i+1}}\\ \lambda_i=\frac{h_{i+1}}{h_i+h_{i+1}}=1-\mu_i\\ g_i=\frac{6}{h_i+h_{i+1}}\left(f[x_i,x_{i+1}]-f[x_{i-1},x_i]\right)\\=6f[x_{i-1},x_i,x_{i+1}] μi=hi+hi+1hiλi=hi+hi+1hi+1=1μigi=hi+hi+16(f[xi,xi+1]f[xi1,xi])=6f[xi1,xi,xi+1]

μ 1 = 0.5 , u μ 2 = 0.5 , λ 1 = λ 2 = 0.5 , g 1 = − 6 , g 2 = 6 \mu_1=0.5,u\mu_2=0.5,\lambda_1=\lambda_2=0.5,g_1=-6,g_2=6 μ1=0.5,uμ2=0.5,λ1=λ2=0.5,g1=6,g2=6,第二边界条件的三弯矩方程为:

[ 2 λ 1 μ 2 2 λ 2 . . . . . . . . . . . . . . . μ n − 2 2 λ n − 2 μ n − 1 2 ] [ M 1 M 2 . . . M n − 2 M n − 1 ] = [ g 1 − μ 1 y 0 ′ ′ g 2 . . . g n − 2 g n − 1 − λ n − 1 y n ′ ′ ] \left[ \begin{matrix} 2 &amp; \lambda_1 &amp; &amp; &amp; \\ \mu_2 &amp; 2 &amp; \lambda_2 &amp; &amp; \\ ...&amp;...&amp;...&amp;...&amp;...\\ &amp; &amp; \mu_{n-2} &amp; 2 &amp; \lambda_{n-2} \\ &amp; &amp; &amp; \mu_{n-1} &amp; 2 \end{matrix} \right] \left[ \begin{matrix} M_1 \\ M_2 \\ ... \\ M_{n-2}\\ M_{n-1} \end{matrix} \right]= \left[ \begin{matrix} g_1-\mu_1y&#x27;&#x27;_0 \\ g_2 \\ ... \\ g_{n-2}\\ g_{n-1}-\lambda_{n-1}y_n&#x27;&#x27; \end{matrix} \right]\\ 2μ2...λ12...λ2...μn2...2μn1...λn22M1M2...Mn2Mn1=g1μ1y0g2...gn2gn1λn1yn

得:

[ 2 0.5 0.5 2 ] [ M 1 M 2 ] = [ − 6 − 0.5 6 ] \left[ \begin{matrix} 2 &amp; 0.5 \\ 0.5 &amp; 2 \end{matrix} \right] \left[ \begin{matrix} M_1 \\ M_2 \end{matrix} \right]= \left[ \begin{matrix} -6-0.5\\ 6 \end{matrix} \right] [20.50.52][M1M2]=[60.56]

解得 M 1 = − 64 15 , M 2 = 61 15 M_1=\frac{-64}{15},M_2=\frac{61}{15} M1=1564,M2=1561

因为:

S i ( x ) = M i − 1 ( x i − x ) 3 6 h i + M i ( x − x i − 1 ) 3 6 h i + 1 h i ( y i − 1 + 1 6 M i − 1 h i 2 ) ( x i − x ) + 1 h i ( y i + 1 6 M i h i 2 ) ( x − x i − 1 ) , x ∈ [ x i − 1 , x i ] S_i(x)=M_{i-1}\frac{(x_i-x)^3}{6h_i}+M_i\frac{(x-x_{i-1})^3}{6h_i}+\\\frac{1}{h_i}\left(y_{i-1}+\frac{1}{6}M_{i-1}h_i^2\right)(x_i-x)+\\\frac{1}{h_i}\left(y_{i}+\frac{1}{6}M_{i}h_i^2\right)(x-x_{i-1}),x\in[x_{i-1},x_i]\\ Si(x)=Mi16hi(xix)3+Mi6hi(xxi1)3+hi1(yi1+61Mi1hi2)(xix)+hi1(yi+61Mihi2)(xxi1),x[xi1,xi]

h i = 1 , M 0 = 1 , M 1 , M 2 h_i=1,M_0=1,M_1,M_2 hi=1,M0=1,M1,M2代入可得:

x ∈ [ 0 , 1 ] , S 1 ( x ) = 1 90 ( − 79 x 2 + 45 x 3 + 124 x ) x ∈ [ 1 , 2 ] , S 2 ( x ) = 1 90 ( 125 x 3 − 567 x 2 + 736 x − 204 ) x ∈ [ 2 , 3 ] , S 3 ( x ) = 1 90 ( − 61 x 3 + 549 x 2 − 1496 x + 1284 ) x\in[0,1],S_1(x)=\frac{1}{90}(-79x^2+45x^3+124x)\\ x\in[1,2],S_2(x)=\frac{1}{90}(125x^3-567x^2+736x-204)\\ x\in[2,3],S_3(x)=\frac{1}{90}(-61x^3+549x^2-1496x+1284) x[0,1],S1(x)=901(79x2+45x3+124x)x[1,2],S2(x)=901(125x3567x2+736x204)x[2,3],S3(x)=901(61x3+549x21496x+1284)


{持续更新}
欢迎扫描二维码关注微信公众号 深度学习与数学   [每天获取免费的大数据、AI等相关的学习资源、经典和最新的深度学习相关的论文研读,算法和其他互联网技能的学习,概率论、线性代数等高等数学知识的回顾]
在这里插入图片描述

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值