故障诊断 | 一文解决,SVM支持向量机的故障诊断(Matlab)

38 篇文章 ¥199.90 ¥299.90
本文介绍了SVM支持向量机在故障诊断中的应用,阐述了SVM的基本原理,包括如何寻找最优超平面和使用支持向量。此外,还详细列举了SVM在Matlab中的模型描述和参数设置,以及其优缺点。通过订阅故障诊断专栏,可以获取更多相关程序源码和资料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

效果一览

在这里插入图片描述

文章概述

故障诊断 | 一文解决,SVM支持向量机的故障诊断(Matlab)

支持向量机(Support Vector Machine,SVM)是一种常用的监督学习算法,用于分类和回归分析。SVM的主要目标是找到一个最优的超平面(或者在非线性情况下是一个最优的超曲面),将不同类别的样本分开。

SVM的基本思想是将样本映射到高维特征空间中,并在这个特征空间中找到一个最优的超平面,使得不同类别的样本能够被最大程度地分离。为了找到这个最优的超平面,SVM使用了支持向量的概念。支持向量是离超平面最近的样本点,它们决定了超平面的位置和方向。

SVM分类的过程如下:

输入训练样本的特征向量和对应的类别标签。
将样本映射到高维特征空间中(可以使用核函数进行映射,以处理非线性问题)。
在特征空间中找到一个最优的超平面,使得不同类别的样本能够被最大程度地分离。
根据超平面将测试样本进行分类。
SVM的优点包括:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习之心

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值