引言
人工智能技术在医疗领域的应用正经历前所未有的发展,特别是在大型语言模型(LLMs)技术的推动下,医疗大模型(Medical Large Models)展现出巨大的潜力。这些模型不仅能够理解复杂的医学术语和概念,还能通过自然语言与用户交互,为医疗专业人士和患者提供有价值的信息和建议。然而,尽管这些模型在知识储备和语言理解能力上表现出色,但它们在检索外部信息和基于证据进行推理方面仍存在显著局限。医疗领域对信息的准确性和时效性要求极高,这使得大模型的检索-推理能力成为其实际应用中的关键瓶颈。
当前医疗大模型面临的核心挑战主要体现在三个方面:首先,模型内部的知识库更新速度远落后于医疗领域的快速发展,无法及时反映最新的医学研究和临床指南;其次,模型生成的建议和诊断缺乏可追溯的证据支持,降低了用户对系统输出的信任度;最后,模型在处理需要综合多源信息的复杂医疗问题时表现不足,难以模拟经验丰富的医疗专业人员的"查阅-分析-决策"过程。这些限制严重制约了医疗大模型在临床实践中的深度应用和价值创造。
为应对这些挑战,研究者们开始探索将检索增强生成(Retrieval Augmented Generation, RAG)