一起学习大模型 - embed model和 llm model 常见的搭配和考虑因素


前言

昨天和别人讨论大模型应用的时候,发现很多人存在词向量混用的情况,就是随意选embed model搭配 llm model 来用。实际上会导致很多的问题,出来的结果肯定也是不理想的。


一、embed model和 llm model 常见的搭配和考虑因素

在大模型(LLM, Large Language Model)中,词向量嵌入(embedding)模型和大语言模型的搭配对于整体性能和效果非常重要。一般来说,词向量嵌入模型的选择和使用要考虑到与大语言模型的兼容性和协同性。以下是一些常见的搭配和考虑因素:

1. 词向量嵌入模型和大语言模型的选择

  • 预训练模型的兼容性:使用与大语言模型同一家族或同一架构的预训练词向量嵌入模型。例如,使用BERT作为词向量嵌入模型,可以搭配使用BERT的变体或升级版(如RoBERTa、DistilBERT)作为大语言模型。
  • 上下文信息:大语言模型通常会包含上下文信息,因此选择能够捕捉上下文的词向量嵌入模型(如Transformer-based模型)效果会更好。
  • 任务需求:根据具体任务选择合适的词向量嵌入模型和大语言模型。例如,对于情感分析任务,可以选择在情感数据上微调过的BERT模型作为词向量嵌入,再搭配使用相同或相似架构的大语言模型。

2. 具体的搭配方案

  • BERT + GPT-3:可以使用BERT的词向量嵌入来初始化输入,然后通过GPT-3进行生成任务。BERT擅长于理解和表示句子的语义,而GPT-3则擅长于生成自然语言文本。
  • Word2Vec/GloVe + Transformer Models:虽然Word2Vec和GloVe是较早期的词向量模型,但它们可以作为初始的词向量表示,再通过Transformer模型(如BERT或GPT)进一步处理和生成。
  • FastText + LLMs:FastText可以捕捉词的亚词级信息,对于语言模型的泛化性能有帮助。搭配如BERT、RoBERTa等大模型可以提升在处理包含罕见词或新词的文本时的性能。

3. 实施细节

  • Fine-tuning:微调(fine-tuning)是提升模型性能的重要步骤。可以对词向量嵌入模型和大语言模型进行联合微调,以使它们更好地适应特定任务和数据集。
  • Embedding Layer Integration:将词向量嵌入模型的输出作为大语言模型的输入层。例如,将BERT的输出嵌入向量输入到GPT模型中进行进一步处理。
  • Attention Mechanism:利用注意力机制(attention mechanism)来整合来自词向量嵌入模型和大语言模型的信息,提升模型对长文本和复杂上下文的处理能力。

二、弥补embed model和 llm model的差异

以BERT 和 GPT-3为例,BERT 和 GPT-3 的词向量在结构上有所不同,但可以通过一些技术手段使它们更好地结合:

维度匹配:确保 BERT 的输出词向量与 GPT-3 的输入嵌入向量在维度上匹配。这可以通过适当的投影层(projection layer)或线性变换来实现。
微调和联合训练:通过对特定任务的数据进行微调,可以进一步优化 BERT 和 GPT-3 的协同工作效果。在一些高级应用中,可以尝试联合微调(joint fine-tuning)这两个模型。

以下是一个示例,展示如何将 BERT 的输出作为 GPT-3 的输入嵌入来进行文本生成:

from transformers import BertModel, BertTokenizer, GPT2LMHeadModel, GPT2Tokenizer
import torch

# 初始化 BERT 模型和分词器
bert_model = BertModel.from_pretrained('bert-base-uncased')
bert_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

# 初始化 GPT-2 模型和分词器(GPT-3 目前没有开源版本,但接口类似)
gpt2_model = GPT2LMHeadModel.from_pretrained('gpt2')
gpt2_tokenizer = GPT2Tokenizer.from_pretrained('gpt2')

# 输入文本
text = "The quick brown fox jumps over the lazy dog."

# 编码文本,使用 BERT 获取词向量
inputs = bert_tokenizer(text, return_tensors='pt')
outputs = bert_model(**inputs)
last_hidden_state = outputs.last_hidden_state

# 准备 GPT-2 输入
gpt2_inputs = gpt2_tokenizer(text, return_tensors='pt')
gpt2_inputs['inputs_embeds'] = last_hidden_state

# 生成文本
gpt2_outputs = gpt2_model.generate(**gpt2_inputs, max_length=50)
generated_text = gpt2_tokenizer.decode(gpt2_outputs[0], skip_special_tokens=True)

print(generated_text)

总结

选择和搭配合适的词向量嵌入模型和大语言模型需要考虑它们的兼容性、具体任务需求以及具体实现细节。通过合理的搭配和微调,可以实现更好的性能和效果。

<think>好的,用户之前已经询问过如何使用LangChain搭建RAG系统,现在他想知道如何结合本地的Ollama部署的embedding模型nomic-embed-text推理模型deepseek-r1:8b来构建RAG。我需要先回顾之前的回答,看看有没有需要调整的地方,确保这次回答在结构上一致,但针对本地模型进行调整。 首先,用户明确提到了使用Ollama本地部署的两个模型:nomic-embed-text作为embedding模型,deepseek-r1:8b作为推理模型。这意味着我需要指导用户如何将这些本地模型集成到LangChain的流程中,替换之前提到的HuggingFaceEmbeddingsOpenAI等云端服务。 接下来,我需要考虑Ollama在LangChain中的支持情况。记得LangChain有Ollama的集成,可以通过Ollama的本地服务来加载模型。所以可能需要使用langchain.llms.Ollamalangchain.embeddings.OllamaEmbeddings相关的模块。 然后,文档加载处理的步骤应该之前类似,比如使用PyPDFLoader或WebBaseLoader,这部分不需要改变。文本分割也是一样的,使用RecursiveCharacterTextSplitter,所以这部分可以保持原样。 在向量化与存储部分,之前用的是HuggingFaceEmbeddings,现在需要替换为Ollama提供的nomic-embed-text模型。需要确认Ollama是否支持这个模型,以及如何正确调用。可能需要使用OllamaEmbeddings并指定模型名称。 对于推理模型,之前用的是OpenAI,现在要替换为本地Ollama的deepseek-r1:8b。这里需要使用Ollama类来初始化模型,并确保模型名称正确,同时可能需要调整参数,比如temperature等。 另外,用户可能是在本地环境运行,需要确保Ollama服务已经正确安装并运行,并且所需的模型已经下载到本地。可能需要提醒用户先通过ollama pull来获取模型。 还要注意代码示例的正确性,比如导入语句是否正确,参数是否匹配。例如,使用OllamaEmbeddings时,可能需要传递base_url参数,如果Ollama服务不在默认的端口上。 另外,用户可能需要了解如何启动Ollama服务,或者是否需要额外的配置步骤。但根据之前的问题,用户可能已经部署好了,所以重点放在如何在LangChain中使用这些模型。 最后,优化策略应用场景部分可能需要调整,以反映使用本地模型的优势,比如数据隐私、离线使用等,以及可能的性能考虑,比如响应时间硬件需求。 需要检查是否有潜在的误区,例如模型名称是否正确,Ollama的模型库中是否真的有nomic-embed-textdeepseek-r1:8b,或者是否有拼写错误。例如,deepseek-r1是否正确的模型名称,或者是否应为deepseek-r1-8b?需要确认。 总结步骤应该是: 1. 确认Ollama服务运行,模型已下载。 2. 文档加载分割(同之前)。 3. 使用OllamaEmbeddings加载nomic-embed-text生成向量,存储到FAISS。 4. 配置检索器。 5. 使用Ollama的deepseek-r1:8b作为LLM,构建RAG链。 需要确保代码示例中正确引用了这些模型,并给出必要的参数,比如base_url如果Ollama服务在非默认位置的话。例如,如果Ollama在本地localhost:11434,可能不需要特别指定,但如果有自定义配置则需要。 可能还需要提醒用户安装必要的依赖,如langchain-community,ollama等,如果之前的回答中没有提到的话。 最后,需要测试代码是否可行,是否存在常见的错误,比如模型名称错误、服务未启动等,并在回答中给出相应的提示或解决方案。</think>以下是基于本地Ollama部署的 **nomic-embed-text**(Embedding模型)与 **deepseek-r1:8b**(推理模型)搭建RAG系统的分步指南,重点说明本地模型集成方法: --- ### 前置条件 1. **Ollama已安装**:确保本地已部署Ollama服务([安装文档](https://ollama.ai/)) 2. **模型下载**: ```bash ollama pull nomic-embed-text # 下载Embedding模型 ollama pull deepseek-r1:8b # 下载推理模型 ``` --- ### 分步实现代码 #### 1. 初始化本地模型 ```python from langchain_community.embeddings import OllamaEmbeddings from langchain_community.llms import Ollama # 初始化Embedding模型(nomic-embed-text) embeddings = OllamaEmbeddings( model="nomic-embed-text", # Ollama中注册的模型名称 base_url="http://localhost:11434" # Ollama服务地址 ) # 初始化推理模型(deepseek-r1:8b) llm = Ollama( model="deepseek-r1:8b", temperature=0.3, # 控制生成随机性(0-1,值越小越确定) num_ctx=4096 # 上下文窗口大小 ) ``` #### 2. 文档处理与向量化(与云端流程相同) ```python from langchain_community.document_loaders import PyPDFLoader from langchain_text_splitters import RecursiveCharacterTextSplitter # 加载PDF文档 loader = PyPDFLoader("论文.pdf") documents = loader.load() # 文本分块 text_splitter = RecursiveCharacterTextSplitter( chunk_size=500, chunk_overlap=50 ) splits = text_splitter.split_documents(documents) # 向量存储(使用FAISS) from langchain_community.vectorstores import FAISS vectorstore = FAISS.from_documents(splits, embeddings) ``` #### 3. 构建RAG链 ```python from langchain.chains import RetrievalQA # 创建检索器 retriever = vectorstore.as_retriever(search_kwargs={"k": 3}) # 组装RAG链 rag_chain = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True # 返回参考文档 ) ``` --- ### 关键优化技巧 1. **Embedding模型适配**: - Nomic-embed-text支持**8192 tokens长上下文**,可适当增大`chunk_size` - 若需更高精度,尝试调整`model_kwargs={"device": "cuda"}`(需GPU支持) 2. **推理模型调优**: ```python llm = Ollama( model="deepseek-r1:8b", temperature=0.3, # 降低生成随机性 top_p=0.9, # 控制生成多样性 stop=["<|endoftext|>"] # 添加停止符 ) ``` 3. **性能监控**: ```python # 测试响应速度 import time start = time.time() response = rag_chain.invoke("量子计算的核心优势是什么?") print(f"响应时间: {time.time()-start:.2f}s") ``` --- ### 常见问题解决 | 问题现象 | 解决方案 | |-------------------------|----------------------------------| | `ConnectionError` | 检查Ollama服务是否启动:`ollama serve` | | `Model not found` | 确认模型名称拼写,重新执行`ollama pull` | | 响应速度慢 | 减少`chunk_size`或升级硬件配置 | | 生成内容不相关 | 调整`search_kwargs={"k": 5}`增加检索量 | --- ### 本地部署优势 1. **数据隐私**:所有计算在本地完成,避免敏感数据外传 2. **定制化**:支持自定义微调模型(需使用Ollama Modelfile) 3. **离线运行**:无需互联网连接即可提供服务 通过这种方案,您可以完全基于本地环境构建安全可控的RAG系统,适合企业内网、科研机构等对数据隐私要求高的场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值