周博磊老师的强化学习纲要笔记-第一课(作业还没做)

第一课上为综述

第一课(下)笔记

Sequntial Decision Making

奖励对Agent如何学习起到向导作用,如何设置reward是一门学问。
action造成的影响导致获得的奖励也许存在延迟,所以近期奖励和长期奖励的trade-off变得格外重要。
在RL中,history定义为observation、actions、rewards的序列
H t = O 1 , R 1 , A 1 , . . . , A t − 1 , O t , R t H_t = O_1, R_1, A_1, ... , A_{t-1}, O_t ,R_t Ht=O1,R1,A1,...,At1,Ot,Rt
一般来说下一个状态是 H t H_t Ht的函数
S t = f ( H t ) S_t =f( H_t ) St=f(Ht)
其实State可以分为environment state和agent state(agent观测到的状态)
S t e = f e ( H t ) S^e_t = f^e(H_t) Ste=fe(Ht)
S t a = f a ( H t ) S^a_t = f^a(H_t) Sta=fa(Ht)
O t = S t e = S t a O_t =S^e_t = S^a_t Ot=Ste=Sta的时候就是FOMDP(FO=full observability)或者简单直接说MDP
但是如果不能就是POMDP(Partial observability)比如斗地主。

Major Components of an RL Agent

一个Agent主要包括以下或者更多的组建:

  • Policy策略
  • Value fuction价值函数:对当前state的好坏估计
  • model模型

Policy

Policy决定agent行为,有两种policy

  1. 概率型: π ( a ∣ s ) = P [ A t = a ∣ S t = s ] \pi(a|s) = P[A_t = a|S_t =s] π(as)=P[At=aSt=s]
  2. 确切型: a ∗ = arg max ⁡ a π ( a ∣ s ) a^* = \underset a {\operatorname {arg\,max} } \pi(a|s) a=aargmaxπ(as)
    DRL输入的S_t一般是一帧画面

Value fution

在这里插入图片描述价值函数是折扣的未来奖励的加和,注意两个词:折扣和未来
因为我们希望之后的奖励越快得到越好。
价值函数的意义是在我们已知一个policy的时候,在s此状态之后平均可以得到多少奖励。
我们还有一个Q函数,价值函数V函数是根据s和pi(Latex下为 π \pi π,之后为了方便,非latex下称pi)得到的平均回报,而Q函数是根据s和a(action,泛指当前状态i下选择的行为,省略下标 a t a_t at
在这里插入图片描述q函数也是ValueBase的RL算法学习的函数(或者说值)

Model

模型是Agent脑海中对世界的建模,预测下一步环境的state和reward
在这里插入图片描述

Valuebase和Policybase的差别

在这里插入图片描述在这里插入图片描述Valuebase直接学习的是value,隐式学习policy
policybase直接学习policy,不学习value function
还有一种结合Valuebase和policybase的方法:Actor-Critic agent
同时学习policy和value,通过两者的交互决定最佳的行为

还有一个分类准则是有无学习model

  • model base
  • model free
    在这里插入图片描述强化学习中exploration探索和exploitaion趋利(直接选择当前已知最优)

实践

http://github.com/metalbubble/RLexample 里面有部分可供实践的代码
在这里插入图片描述代码gitclone下来可以好好的研究一下。

作业

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值