Model Context Protocol (MCP) 详解:连接AI与数据的开放标准

Model Context Protocol (MCP) 详解:连接AI与数据的开放标准

在这里插入图片描述

引言

在人工智能快速发展的今天,大型语言模型(LLM)已经成为各种应用的核心组件。然而,即使是最先进的模型也面临着一个共同的挑战:如何有效地访问和利用外部数据与工具。Model Context Protocol(MCP)应运而生,它提供了一个开放标准,用于规范化应用程序如何向LLM提供上下文信息,从而解决这一关键问题。

本文将深入探讨Model Context Protocol的核心概念、架构设计、实现细节和实际应用,并通过丰富的代码示例展示如何利用MCP构建强大的AI应用。无论你是AI开发者、数据科学家还是对AI技术感兴趣的读者,这篇文章都将帮助你理解MCP如何改变AI应用与数据交互的方式。

什么是Model Context Protocol?

Model Context Protocol(MCP)是一个开放协议,用于标准化应用程序如何向大型语言模型(LLM)提供上下文。它可以被比喻为"AI应用程序的USB-C端口"。正如USB-C提供了一种标准化的方式来连接设备与各种外设和配件,MCP提供了一种标准化的方式来连接AI模型与不同的数据源和工具。

MCP的核心目标是解决AI助手与数据之间的隔离问题。即使是最先进的模型也受到与数据隔离的限制——它们被困在信息孤岛和传统系统之后。每个新的数据源都需要自己的定制实现,使真正连接的系统难以扩展。MCP通过提供一个通用的开放标准来连接AI系统与数据源,替代了分散的集成方式。

为什么需要MCP?

MCP帮助开发者在LLM之上构建代理和复杂工作流。LLM经常需要与数据和工具集成,而MCP提供:

  1. 预构建集成列表:不断增长的预构建集成列表,您的LLM可以直接插入使用
  2. 灵活切换提供商:在LLM提供商和供应商之间切换的灵活性
  3. 数据安全最佳实践:在您的基础设施内保护数据的最佳实践

MCP的核心优势

MCP提供了几个关键优势:

  1. 标准化:提供一个通用接口,减少为每个数据源创建自定义连接器的需要
  2. 安全性:遵循最佳实践,确保数据在您的基础设施内保持安全
  3. 灵活性:允许在不同的LLM提供商和供应商之间切换
  4. 可扩展性:随着生态系统的成熟,AI系统将在不同工具和数据集之间保持上下文
  5. 开放标准:作为一个协作的开源项目和生态系统开发

MCP的架构和工作原理

在这里插入图片描述

MCP遵循客户端-服务器架构,其中主机应用程序可以连接到多个服务器:

主要组件

  • MCP主机(Hosts):是启动连接的LLM应用程序(如Claude Desktop或IDE),它们希望通过MCP访问数据
  • MCP客户端(Clients):在主机应用程序内部维护与服务器的1:1连接的协议客户端
  • MCP服务器(Servers):通过标准化的Model Context Protocol暴露特定功能的轻量级程序
  • 本地数据源:MCP服务器可以安全访问的计算机文件、数据库和服务
  • 远程服务:MCP服务器可以连接的通过互联网可用的外部系统(例如,通过API)

架构流程

在MCP架构中,主机应用程序(如Claude Desktop)包含MCP客户端,这些客户端通过传输层与MCP服务器通信。每个MCP服务器都是一个独立的进程,可以访问特定的数据源或功能。这种设计允许模块化和安全的数据访问,同时保持标准化的通信协议。

MCP的核心概念

1. 服务器(Server)

MCP服务器是协议的核心组件,它暴露数据和功能给LLM应用程序。服务器处理连接管理、协议合规性和消息路由。在Python实现中,FastMCP服务器是与MCP协议交互的主要接口。

服务器可以:

  • 定义生命周期管理(启动/关闭)
  • 指定依赖关系
  • 提供类型安全的上下文

2. 资源(Resources)

资源是MCP如何向LLM暴露数据的方式。它们类似于REST API中的GET端点——它们提供数据,但不应执行重要的计算或产生副作用。资源通常用于:

  • 提供静态配置数据
  • 访问动态用户数据
  • 检索文档或信息

资源使用URI模式定义,可以包含参数,例如:users://{user_id}/profile

3. 工具(Tools)

工具允许LLM通过服务器执行操作。与资源不同,工具预期会执行计算并产生副作用。工具可以:

  • 执行计算(如计算BMI)
  • 调用外部API(如获取天气数据)
  • 修改数据或系统状态

工具通常定义为带有类型化参数和返回值的函数。

4. 提示(Prompts)

提示是可重用的模板,用于定义LLM交互模式。它们可以包含占位符,在运行时填充,使开发者能够创建一致的用户体验。

5. 上下文(Context)

上下文是MCP中的关键概念,它允许在请求处理期间访问元数据和状态。上下文可以包含:

  • 请求特定信息
  • 生命周期上下文(如数据库连接)
  • 用户特定数据

MCP的协议规范和消息格式

MCP使用JSON-RPC 2.0作为其消息格式的基础。所有消息必须是UTF-8编码的。协议定义了三种主要的消息类型:

1. 请求(Requests)

请求从客户端发送到服务器或反之,用于启动操作。

{
  "jsonrpc": "2.0",
  "id": "request-123",
  "method": "tool.call",
  "params": {
    "name": "add",
    "arguments": {"a": 5, "b": 3}
  }
}

2. 响应(Responses)

响应作为请求的回复发送,包含操作的结果或错误。

{
  "jsonrpc": "2.0",
  "id": "request-123",
  "result": {
    "value": 8
  }
}

3. 通知(Notifications)

通知是从客户端发送到服务器或反之的单向消息。接收者不应发送响应。

{
  "jsonrpc": "2.0",
  "method": "log.info",
  "params": {
    "message": "操作已完成"
  }
}

传输机制

MCP定义了两种标准传输机制:

  1. stdio:通过标准输入和标准输出进行通信
  2. Streamable HTTP:通过HTTP流进行通信

客户端应尽可能支持stdio,这是最简单和最通用的传输方式。

MCP的安装和部署

系统要求

要使用MCP,您需要:

  • Python 3.10或更高版本
  • 对于Python SDK:pip或uv包管理器
  • 对于其他SDK:相应语言的包管理器

安装Python SDK

我们推荐使用uv来管理您的Python项目。在uv管理的Python项目中,通过以下方式添加mcp到依赖项:

uv add "mcp[cli]"

或者,对于使用pip的项目:

pip install mcp

安装其他SDK

MCP支持多种语言的SDK:

  • TypeScript/JavaScriptnpm install @modelcontextprotocol/typescript-sdk
  • Java:通过Maven或Gradle安装
  • Kotlin:通过Maven或Gradle安装
  • C#:通过NuGet安装

运行独立的MCP开发工具

使用uv运行mcp命令:

uv run mcp

MCP的使用示例

基础服务器示例

以下是一个简单的MCP服务器示例,它暴露了计算器工具和动态问候资源:

# server.py
from mcp.server.fastmcp import FastMCP

# 创建一个MCP服务器
mcp = FastMCP("Demo")

# 添加一个加法工具
@mcp.tool()
def add(a: int, b: int) -> int:
    """加两个数字"""
    return a + b

# 添加一个动态问候资源
@mcp.resource("greeting://{name}")
def get_greeting(name: str) -> str:
    """获取个性化问候"""
    return f"你好,{name}!"

服务器启动示例

可以使用stdio(默认)或SSE传输启动服务器:

# 使用stdio传输(默认)
uv run mcp-simple-tool

# 使用SSE传输在自定义端口上
uv run mcp-simple-tool --transport sse --port 8800

服务器生命周期管理示例

以下示例展示了如何使用生命周期管理来初始化和清理资源:

# 添加生命周期支持,用于启动/关闭,具有强类型
from contextlib import asynccontextmanager
from collections.abc import AsyncIterator
from dataclasses import dataclass

from fake_database import Database  # 替换为您实际的数据库类型

from mcp.server.fastmcp import Context, FastMCP

# 创建一个命名服务器
mcp = FastMCP("My App")

# 指定部署和开发的依赖项
mcp = FastMCP("My App", dependencies=["pandas", "numpy"])

@dataclass
class AppContext:
    db: Database

@asynccontextmanager
async def app_lifespan(server: FastMCP) -> AsyncIterator[AppContext]:
    """管理应用程序生命周期,具有类型安全的上下文"""
    # 在启动时初始化
    db = await Database.connect()
    try:
        yield AppContext(db=db)
    finally:
        # 在关闭时清理
        await db.disconnect()

# 将生命周期传递给服务器
mcp = FastMCP("My App", lifespan=app_lifespan)

# 在工具中访问类型安全的生命周期上下文
@mcp.tool()
def query_db(ctx: Context) -> str:
    """使用初始化资源的工具"""
    db = ctx.request_context.lifespan_context["db"]
    return db.query()

资源定义示例

资源是MCP向LLM暴露数据的方式,类似于REST API中的GET端点:

from mcp.server.fastmcp import FastMCP

mcp = FastMCP("My App")

@mcp.resource("config://app")
def get_config() -> str:
    """静态配置数据"""
    return "应用程序配置在这里"

@mcp.resource("users://{user_id}/profile")
def get_user_profile(user_id: str) -> str:
    """动态用户数据"""
    return f"用户{user_id}的个人资料数据"

工具实现示例

工具允许LLM通过服务器执行操作,与资源不同,工具预期会执行计算并产生副作用:

import httpx
from mcp.server.fastmcp import FastMCP

mcp = FastMCP("My App")

@mcp.tool()
def calculate_bmi(weight_kg: float, height_m: float) -> float:
    """计算BMI,给定体重(公斤)和身高(米)"""
    return weight_kg / (height_m**2)

@mcp.tool()
async def fetch_weather(city: str) -> str:
    """获取城市的当前天气"""
    async with httpx.AsyncClient() as client:
        response = await client.get(f"https://api.weather.com/{city}")
        return response.text

网站获取工具示例

以下是一个简单的MCP服务器,它暴露了一个网站获取工具:

from mcp.server.fastmcp import FastMCP
import httpx

# 创建一个MCP服务器
mcp = FastMCP("网站获取工具")

@mcp.tool()
async def fetch_website(url: str) -> str:
    """获取指定URL的网站内容"""
    async with httpx.AsyncClient() as client:
        response = await client.get(url)
        return response.text

@mcp.tool()
def extract_text(html: str) -> str:
    """从HTML中提取纯文本内容"""
    # 这里可以使用BeautifulSoup或其他HTML解析库
    # 简化示例
    import re
    text = re.sub(r'<[^>]+>', '', html)
    return text

客户端示例

以下是一个简单的MCP客户端示例,它连接到MCP服务器并使用其工具:

from mcp.client import Client
import asyncio

async def main():
    # 连接到MCP服务器
    client = Client()
    await client.connect("stdio", "path/to/server.py")
    
    # 获取服务器信息
    info = await client.get_server_info()
    print(f"已连接到服务器: {info.name}")
    
    # 列出可用工具
    tools = await client.list_tools()
    print(f"可用工具: {[tool.name for tool in tools]}")
    
    # 调用工具
    result = await client.call_tool("add", {"a": 5, "b": 3})
    print(f"5 + 3 = {result}")
    
    # 读取资源
    greeting = await client.read_resource("greeting://世界")
    print(greeting)
    
    # 关闭连接
    await client.close()

if __name__ == "__main__":
    asyncio.run(main())

提示模板示例

MCP还支持提示模板,用于定义LLM交互模式:

from mcp.server.fastmcp import FastMCP

mcp = FastMCP("提示示例")

@mcp.prompt("greeting")
def greeting_prompt() -> str:
    """返回一个问候提示模板"""
    return """
    你好!我是一个AI助手,我可以帮助你回答问题。
    
    今天是{date},很高兴见到你,{name}!
    
    你有什么问题想问我吗?
    """

@mcp.prompt("summary")
def summary_prompt() -> str:
    """返回一个摘要提示模板"""
    return """
    请为以下文本生成一个简短的摘要:
    
    {text}
    
    摘要:
    """

完整应用示例

以下是一个更完整的MCP应用示例,结合了多种功能:

from mcp.server.fastmcp import FastMCP, Context
import httpx
import json
from typing import List, Dict, Any
import os

# 创建一个MCP服务器
mcp = FastMCP(
    "综合示例应用",
    description="一个展示MCP多种功能的综合示例",
    dependencies=["httpx", "beautifulsoup4"]
)

# 添加资源
@mcp.resource("config://app")
def get_app_config() -> str:
    """获取应用配置"""
    config = {
        "name": "综合示例应用",
        "version": "1.0.0",
        "author": "MCP示例团队"
    }
    return json.dumps(config, ensure_ascii=False, indent=2)

@mcp.resource("data://{dataset_id}")
def get_dataset(dataset_id: str) -> str:
    """获取指定数据集"""
    datasets = {
        "users": [{"id": 1, "name": "张三"}, {"id": 2, "name": "李四"}],
        "products": [{"id": 101, "name": "笔记本电脑"}, {"id": 102, "name": "智能手机"}]
    }
    
    if dataset_id in datasets:
        return json.dumps(datasets[dataset_id], ensure_ascii=False, indent=2)
    else:
        return f"数据集 '{dataset_id}' 不存在"

# 添加工具
@mcp.tool()
def calculate(expression: str) -> float:
    """计算数学表达式"""
    # 警告:在实际应用中应该使用更安全的方法
    return eval(expression)

@mcp.tool()
async def search_web(query: str) -> str:
    """搜索网络获取信息(模拟)"""
    # 这是一个模拟实现
    await asyncio.sleep(1)  # 模拟网络延迟
    return f"关于'{query}'的搜索结果:这是一些模拟的搜索结果数据。"

@mcp.tool()
def save_note(ctx: Context, title: str, content: str) -> str:
    """保存用户笔记"""
    user_id = ctx.request_context.client_info.get("user_id", "anonymous")
    # 在实际应用中,这里会将笔记保存到数据库
    return f"已为用户 {user_id} 保存标题为 '{title}' 的笔记"

# 添加提示模板
@mcp.prompt("assistant")
def assistant_prompt() -> str:
    """助手提示模板"""
    return """
    你是一个有用的AI助手,专门帮助用户解决{domain}问题。
    
    用户信息:{user_info}
    
    请以友好和专业的方式回应用户的请求。
    """

# 主函数
if __name__ == "__main__":
    import uvicorn
    import sys
    
    # 检查是否指定了传输方式
    if len(sys.argv) > 1 and sys.argv[1] == "--web":
        # 作为Web服务启动
        app = mcp.mount_asgi()
        uvicorn.run(app, host="0.0.0.0", port=8000)
    else:
        # 使用stdio传输启动
        mcp.run()

MCP的实际应用场景

MCP被设计用于多种场景,包括:

  1. 数据集成:连接LLM到企业数据源,如文档库、CRM系统或内部知识库
  2. 工具使用:允许LLM使用计算工具、API或服务
  3. 开发环境:增强IDE和开发工具,使AI助手能够理解代码库和项目上下文
  4. 个人助手:使个人AI助手能够访问用户的本地文件、日历和其他个人数据
  5. 企业系统:在保持数据安全和隐私的同时,将AI功能集成到企业系统中

最佳实践与性能优化

在使用MCP时,以下是一些最佳实践:

  1. 资源与工具分离:明确区分资源(提供数据)和工具(执行操作)
  2. 类型安全:利用Python的类型提示来确保API的一致性和可靠性
  3. 异步处理:对于I/O密集型操作,使用异步函数提高性能
  4. 错误处理:实现适当的错误处理,提供有意义的错误消息
  5. 文档:为所有资源和工具提供清晰的文档字符串
  6. 安全性:遵循安全最佳实践,特别是在处理用户数据时
  7. 测试:编写单元测试和集成测试,确保服务器的可靠性

总结与展望

Model Context Protocol(MCP)代表了AI应用与数据交互方式的重要进步。通过提供一个标准化的接口,MCP使开发者能够更容易地将LLM与各种数据源和工具集成,同时保持安全性和灵活性。

随着AI技术的不断发展,MCP的生态系统也在不断扩大,支持更多的语言、框架和用例。作为一个开放标准,MCP的未来发展将由社区驱动,为AI应用的构建提供更强大、更灵活的基础。

无论你是构建个人助手、企业应用还是开发工具,MCP都提供了一种强大的方式来连接AI与数据,释放大型语言模型的全部潜力。

参考资料

  1. Model Context Protocol官方网站
  2. MCP规范文档
  3. Python SDK GitHub仓库
  4. Anthropic MCP文档
  5. MCP核心架构
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

扫地的小何尚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值