RAxML下载与使用与ML建树原理

>ML建树原理

1.选择模型:首先需要根据不同的分子序列特点和研究目的,选择合适的进化模型。常用的模型包括JC模型、K80模型、HKY模型、GTR模型等。

2.构建初始树:为了进行ML优化,需要构建一颗初始的进化树。初始树的构建可以使用多种方法,例如随机构建、邻接法、UPGMA法等。

3.计算似然值:计算初始树的似然值,即给定当前进化树拓扑结构和分支长度下,观测到输入序列的概率。该概率可以根据所选的进化模型和序列数据计算得出。

4.优化树拓扑:通过修改进化树的拓扑结构,得到新的进化树,并计算其似然值。如果新的进化树的似然值比原始树更高,则接受该新树,否则舍弃。

5.优化分支长度:在确定树的拓扑结构后,进一步通过优化分支长度,使得观测到的序列数据出现的概率最大。这个过程通常使用牛顿法、梯度下降法等数值优化方法实现。

6.重复优化:不断重复步骤4和步骤5,直到ML似然值收敛或达到预设的停止条件。

7.输出结果:最终输出优化后的进化树和相应的似然值,用于进一步的分析和解释。

似然值是如何计算的:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值