CV 经典主干网络 (Backbone) 系列: Darknet-53

本文详细介绍了Darknet-53,YOLOv3的backbone,其借鉴ResNet设计,包含53个卷积层。尽管网络结构中展示了52层,但最后的"Connected"层也是一个1x1卷积层。Darknet-53以256x256作为输入,经过5次下采样,输出特征图大小为8x8,步长为32,且不使用pooling层。相比于ResNet-152,Darknet-53在保持相近性能的同时,提供了更高的运行速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CV 经典主干网络 (Backbone) 系列: Darknet-53

作者:Joseph Redmon

发表时间:2018

Paper 原文: YOLOv3: An Incremental Improvement

该篇是 CV 经典主干网络 (Backbone) 系列 下的一篇文章。

1. 网络结构

Darknet-53 是 YOLOv3 的 backbone。具体结构参考下面的图片。左侧是 Darknet-53 的完整结构图,右侧是对左侧中的 “Convolutional” 层 和 “Residual” 层的细节展示。显然 Darknet-53 借鉴了 Resnet 的设计思想,引入了 shotcut 的概念。

在这里插入图片描述

Darknet-53 顾名思意,总共有 53 个卷积层,但是上面的结构中只看到 52 个卷积层,其实 最后的 “Connected” 层也是卷积层(1x1 的卷积实现的类似 fc 的效果,所以也有资料把它称做 fc 层),“Connected” 层的具体参数如下。

[convolutional]
filters=1000
size=1
stride=1
pad=1
activat
### 回答1: YOLOv4中的yolopose算法使用的是Darknet网络作为其backboneDarknet是一个轻量级的神经网络框架,支持多种神经网络模型,包括YOLOv4、YOLOv3、YOLOv2等。在YOLOv4中,yolopose模块利用Darknet网络提取图像特征,并通过自定义的姿势估计模块进行姿势估计。 ### 回答2: Yolopose的backboneDarknet53网络Darknet53是一个卷积神经网络架构,它是Yolopose中用于构建backbone的主要网络Darknet53是由YOLO作者Joseph Redmon创建的,旨在用于物体检测任务。 Darknet5353个卷积层组成,其中包括残差块(residual blocks)和上采样层(upsampling layers)。这个网络结构的特点是具有非常深的网络深度,能够提取更加丰富的特征表示。 Darknet53使用了一种基于跳跃连接的残差结构,以解决深度网络的退化问题。这种结构使得网络可以更好地传递梯度,并且有助于减轻梯度消失的问题,从而提高了网络的训练和优化稳定性。 使用Darknet53作为Yolopose的backbone,可以提供较高精度的姿态估计结果。该网络在大规模的人体姿态估计数据集上进行了训练,能够有效地捕捉人体关键点的位置和姿态信息。 总之,Yolopose的backbone网络Darknet53,它是一个深度的卷积神经网络结构,用于提取丰富的特征表示,并在姿态估计任务中取得了较好的效果。 ### 回答3: Yolopose 是一个用于人体姿势估计的网络模型。它的网络结构使用了Darknet53 这个广泛应用的网络结构作为其主干(backbone)。 Darknet53 是一个基于深度残差网络(ResNet)的卷积神经网络,由于其网络结构比较深且具有较高的计算效率,因此在很多计算机视觉任务中被广泛应用。 Darknet53 使用了一系列卷积层、池化层和跳跃连接(skip connections)来提取输入图像的特征。它通过多个残差块,实现了不同层之间的信息传递和特征的重用。在网络的最后几个残差块中,特征图的分辨率会进行下采样,以便更好地捕捉不同尺度的特征。最终,Darknet53 会将输入图像的特征转换成一个较低维度的特征向量。 Yolopose 在 Darknet53 的基础上,添加了额外的层来进行姿势估计。这些额外的层包括卷积层、全连接层、池化层等等,用于识别和回归关节点的位置。 综上所述,Yolopose 的 backbone 是基于 Darknet53网络结构,通过其提取输入图像的特征,并利用其他层进行姿势估计。这种结构使得 Yolopose 在准确性和计算效率上达到了一个平衡。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值