IS曲线及其推导

1.产品市场均衡:产品市场上总供给与总需求相等。

2.产品市场的均衡条件:

简化为:s = i

实际表示的是资本市场均衡的条件,但在封闭的经济中,它又表示产品市场的均衡。

3.均衡的收入的公式:

 

     均衡的国民收入与利率成反向变化。

4.IS的含义:描述产品市场达到宏观均衡,即i=s时,总产出与利率之间的关系。

根据凯恩斯的储蓄函数s=s(Q)和投资函数i = i (r) 。两部门产品市场均衡条件可写为:

 

   r取决于货币市场,这里外生给定;产品市场只能决定产出Q。

5.IS曲线含义:

在资本市场中供给与需求相等时所有实际国民收入和利率的组合。

 

总产出与利率之间存在着反向变化的关系,即利率提高时总产出水平趋于减少,利率降低时总产出水平趋于增加。处于IS曲线上的任何点位都表示i=s,偏离IS曲线的任何点位都表示没有实现均衡。

6.IS曲线的推导

如下图,图中(a)(c)和(d)是倒置的,各轴是正值。图(a)时表示投资函数,投资和利息率按反方向变化,投资是利息的减函数。(c)表示储蓄函数,s是实际国民收入的增函数,与收入同方向变化。图(b)表示储蓄与投资的均等关系,450线上的任意一点到两轴的距离导相等。图(d)表示商品市场均衡时r与Q的关系。

 

首先,从图(a)的投资曲线上任取一点A,表示在利息率为Q1时,投资为i1;

然后由A`作连线交于图(b)中的450线。根据s=i 的均衡条件,在投资等于i1时,储蓄应为s1 ;

根据图(c)的储蓄函数,储蓄函数为s1时,实际国民收入为Q1,从而在(d)中找到利息率为Q1、收入为Q1时储蓄与投资均衡点A。

同样的方法,在图(d)中可以得到B点。连接AB两点就可以获得IS曲线。

注意:如果储蓄函数与投资函数不是直线,那就需要选取与投资函数曲线上更多的点所对应的储蓄函数上的收入来做出IS曲线.

7.产品市场的自动均衡机制

1) 例如C、D点都是非均衡点,在C点,是Q1与r2的组合,当利息率为r2时,投资应为i2,而在收入为Q1时,储蓄为s1,从而在Q1与r2时,商品市场是不均衡的,这表现为i2> s1。D点是Q2与r1的组合,当利息率为r1时,投资应为i1,而在收入为Q2时,储蓄为s2,从而商品市场是不均衡的,这表现为i1<s2。

2)商品市场非均衡时的调整

古典学派理论中,当储蓄与投资不平衡时,利息率会发生变动以调整储蓄与投资的不平衡。

在凯恩斯的理论中,利息率完全是货币市场中货币供给与需求决定的,利息率并不能调整储蓄与投资的平衡。因此收入水平必须变动,以使储蓄与投资保持平衡。凯恩斯理论中认为收入是个变量,在储蓄函数给定的情况下,投资水平将决定收入水平,主要是通过存货调节机制实现,这一点决定了在商品市场非均衡条件下的调整方向。

投资大于储蓄,i2 > s1,从而使收入水平会上升,即从Q1移向Q2以使储蓄与投资保持平衡,从而C点会向B点的方向移动。

投资小于储蓄,i1 < s2,从而使收入水平下降,从Q2移向Q1,D点的变动方面是向A点移动。

结论:

如果某一点位处于IS曲线右边,表示i<s,即现行的利率水平过高,从而导致投资规模小于储蓄规模。如果某一点位处于IS曲线的左边,表示i>s,即现行的利率水平过低,从而导致投资规模大于储蓄规模。自动调整机制,使得它们回到均衡。

决定投资与储蓄平衡的不是利息率的变动,而是收入的变动,不是储蓄决定投资,而是投资通过收入水平的变动决定储蓄。

 

由于投资是利息的减函数,而储蓄是收入的增函数,从而随着利息率的下降和投资的增加,收入必须上升,才能保证储蓄与投资的相等。因而为了保持商品市场的均衡,利息率与收入是按相反的方向变动的。

 

### 使用最小二乘法实现B样条曲线的路径平滑 #### B样条曲线基础理论 B样条曲线是由控制点定义的一类参数化曲线,在计算机图形学和几何建模中有广泛应用。对于给定一组离散的数据点,可以通过调整这些控制点来拟合一条光滑的B样条曲线。 #### 最小二乘法简介 最小二乘法是一种统计学习方法,旨在通过最小化误差平方和来估计模型的最佳函数匹配。当应用于B样条曲线时,目标是最小化实际测量值与预测值之间的差异[^1]。 #### 构造目标函数 为了应用最小二乘准则到B样条曲线上,需要构建如下形式的目标函数: \[ E(\mathbf{c})=\sum_{i=0}^{n}\left\| \mathbf{x}_i-\sum_{j=0}^{m}N_j(u_i)\cdot c_j \right\|^2 \] 其中: - \( n \) 是样本数量; - \( m \) 表示控制顶点的数量; - \( N_j() \) 代表第\( j \)个基函数; - \( u_i \) 和 \( \mathbf{x}_i \) 分别表示对应于采样位置上的参数值及其坐标向量; - \( \mathbf{c}=[c_0, ..., c_m]^T \) 则是待求解的未知数——即各阶段对应的权重系数矩阵。 该表达式的含义是在所有已知数据点处计算出由当前设定下的近似曲线所给出的位置,并将其同真实观测结果相比较;随后累加每一对偏差项并取其二次幂作为整体损失度量标准。 #### 解决方案推导过程 上述方程可以转化为线性代数问题解决。具体来说就是寻找使得E达到极小化的那一组特定条件下的权值集合C。这通常涉及到建立正规方程组并通过数值手段求得解析解或迭代逼近最优解。 ```python import numpy as np from scipy.interpolate import BSpline def least_squares_bspline(x_data, y_data, degree=3, num_control_points=None): """ 计算使用最小二乘法拟合的B样条曲线 参数: x_data (array_like): 输入X轴数据序列. y_data (array_like): 对应Y轴数据序列. degree (int): 花费次数,默认为三次多项式. num_control_points (int or None): 控制点数目; 如果设置为None,则自动确定. 返回: tuple: 包含两个元素的结果元组, 第一个是BSpline对象, 第二是用于绘制最终图像所需的所有节点数组. 注意事项: * 需要安装SciPy库才能运行此代码片段。 """ if not isinstance(degree, int) or degree < 1: raise ValueError('Degree must be a positive integer') # 自动决定控件点数目的策略 if num_control_points is None: num_control_points = min(len(x_data), max(4, round((len(x_data)+degree)/2))) tck = [] knots = np.linspace(min(x_data)-1e-6,max(x_data)+1e-6,num=len(x_data)+degree+1)[degree:-degree] basis_matrix = [] for i in range(num_control_points): temp_basis = BSpline.basis_element(knots[i:i + degree + 2]) basis_matrix.append([temp_basis(xi).item() for xi in x_data]) A = np.array(basis_matrix).transpose() b = np.vstack(y_data) control_points_y = np.linalg.lstsq(A,b,rcond=-1)[0].flatten() spline_curve = BSpline(np.pad(sorted(list(set(knots))), (0, degree+1-len(set(knots)%num_control_points)), 'edge'),control_points_y, k=degree) return spline_curve, sorted(list(set(knots))) ``` 这段Python脚本实现了利用最小二乘法对二维空间内一系列离散点集执行B样条插值得功能。这里采用了`scipy.interpolate.BSpline`来进行具体的运算操作。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值