一、Deepseek 如何账务处理和费用报销?
1、账务处理
在日常的账务处理中,财务人最烦心的莫过于有的业务不知道该入哪个科目了,这时我们就可以借助Deepseek。
比如:公司购买了一台2000元的电脑,计入“固定资产”还是“管理费用”?
2、费用报销
财务人可以上传一张发票,让Deepseek进行深度思考,比如下边这个:
二、Deepseek如何帮财务人报税?
财务人每个月报税,都要都要核对账票数据,比如发票销项税额和账务上销项税额科目的差异。
很多财务都不知道怎么去处理这个数据,现在让我们试试Deepseek。
首先,全量发票导出的销项税数据和账务导出的科目数据分别存在一个文件book1的两个工作表sheet1和sheet2中。
如图:sheet1数据如下:
sheet2数据如下:
然后,把这个表格发给Deepseek,看看它是怎么处理的。
然后,Deepseek给出了两种方案,还把各个方案进行了优劣对比。
方法1也是我们经常会用到的,用函数公式解决,它不仅给了函数的公式,还给了操作步骤,还解释了不同公式的用处。
然后直接粘贴公式到相应的表格栏次,直接填充,就找出差异了。
方法2是直接用条件格式来处理,结果如下:
最后deepseek的总结:
方法一适合快速核对少量数据。
方法二适合直观查看差异。
三、Deepseek如何帮财务人出财务报告?
财务人在出具财务报告时,会涉及到繁琐的分析,遇到不会分析的,不妨交给Deepseek。
来看下面这个案例:
我们给Deepseek下达指令 :“自动生成 2024年度财务报告模板,包含利润表、资产负债表、现金流量表的核心指标,并附同比 / 环比增长率”,一份专业的财务报告模板就自动生成了。
四、其他Deepseek最财务人的帮助
小编认为,Deepseek对财务人还有一个最好的作用就是税务合规。
比如下面这个问题:
财务人将自己放在税务稽查人员的身份上,探知企业的账务风险,对财务工作未尝不是一种帮助。财务人真的可以用起来!
其他Deepseek对财务人的帮助,小编整理了一些,供大家参考:
1、财务数据异常检测: 告知DeepSeek“作为财务人员,帮我分析这些财务数据中是否存在异常值,比如收入、成本、费用等数据的波动异常”,并上传相关数据文件,让其找出异常数据点和可能存在问题的科目。
2、财务指标计算与分析: 要求DeepSeek“计算这份财务报表的偿债能力、盈利能力、营运能力指标,并与行业平均水平对比分析”,以了解企业在行业中的财务地位和表现。
3、财务数据预测: 向DeepSeek输入历史财务数据,说“基于这些数据,预测未来几个月或季度的销售额、利润等关键财务指标”,为财务预算和决策提供参考。
风险评估与内部控制
4、财务报告生成: 对DeepSeek说“根据这些财务数据和业务情况,生成一份季度财务报告,包括文字分析和相关图表”,它可快速生成报告初稿,财务人再进行审核和完善。
5、与管理层沟通辅助: 准备与管理层沟通财务工作时,可先让DeepSeek“用通俗易懂的语言解释这些财务数据和财务指标的含义及对公司的影响”,以便更好地向管理层汇报。
大家觉得Deepseek对财务人还有什么作用?
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。