机器人逆运动学公式推导中常用的方程求解

本文详细解析了几种常见的三角方程求解方法,包括直接给出sin和cos值时角度θ的确定方式,以及形如a*cos(θ)+b*sin(θ)=c的方程求解步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

求方程: s i n ( θ ) = a sin(\theta)=a sin(θ)=a

则有, c o s ( θ ) = ± 1 − a 2 cos(\theta)=\pm \sqrt{1-a^{2}} cos(θ)=±1a2

故, θ = a t a n 2 ( s i n ( θ ) , c o s ( θ ) ) = a t a n 2 ( a , ± 1 − a 2 ) \theta=atan2(sin(\theta), cos(\theta))=atan2(a, \pm \sqrt{1-a^{2}}) θ=atan2(sin(θ),cos(θ))=atan2(a,±1a2 )


求方程: c o s ( θ ) = b cos(\theta)=b cos(θ)=b

则有, s i n ( θ ) = ± 1 − b 2 sin(\theta)=\pm \sqrt{1-b^{2}} sin(θ)=±1b2

故, θ = a t a n 2 ( s i n ( θ ) , c o s ( θ ) ) = a t a n 2 ( ± 1 − b 2 , b ) \theta=atan2(sin(\theta), cos(\theta))=atan2(\pm \sqrt{1-b^{2}}, b) θ=atan2(sin(θ),cos(θ))=atan2(±1b2 ,b)


求方程: a ⋅ c o s ( θ ) + b ⋅ s i n ( θ ) = 0 a \cdot cos(\theta)+b \cdot sin(\theta)=0 acos(θ)+bsin(θ)=0

令: a = a 2 + b 2 s i n ( α ) ⇒ s i n ( α ) = a a 2 + b 2 , b = a 2 + b 2 c o s ( α ) ⇒ c o s ( α ) = b a 2 + b 2 a=\sqrt{a^{2}+b^{2}}sin(\alpha) \Rightarrow sin(\alpha)=\frac{a}{\sqrt{a^{2}+b^{2}}}, b=\sqrt{a^{2}+b^{2}}cos(\alpha) \Rightarrow cos(\alpha)=\frac{b}{\sqrt{a^{2}+b^{2}}} a=a2+b2 sin(α)sin(α)=a2+b2 a,b=a2+b2 cos(α)cos(α)=a2+b2 b

则有, a 2 + b 2 s i n ( α ) c o s ( θ ) + a 2 + b 2 c o s ( α ) s i n ( θ ) = 0 \sqrt{a^{2}+b^{2}}sin(\alpha)cos(\theta)+\sqrt{a^{2}+b^{2}}cos(\alpha)sin(\theta)=0 a2+b2 sin(α)cos(θ)+a2+b2 cos(α)sin(θ)=0

即, a 2 + b 2 s i n ( α + θ ) = 0 ⇒ s i n ( α + θ ) = 0 a 2 + b 2 = 0 \sqrt{a^{2}+b^{2}}sin(\alpha+\theta)=0 \Rightarrow sin(\alpha+\theta)=\frac{0}{\sqrt{a^{2}+b^{2}}}=0 a2+b2 sin(α+θ)=0sin(α+θ)=a2+b2 0=0

那么, c o s ( α + θ ) = ± 1 − 0 = ± 1 cos(\alpha + \theta)=\pm \sqrt{1-0}=\pm 1 cos(α+θ)=±10 =±1

故, θ = a t a n 2 ( s i n ( α + θ ) , c o s ( α + θ ) ) − a t a n 2 ( s i n ( α ) , c o s ( α ) ) = a t a n 2 ( 0 , ± 1 ) − a t a n 2 ( a , b ) \theta=atan2(sin(\alpha+\theta), cos(\alpha+\theta))-atan2(sin(\alpha), cos(\alpha))=atan2(0, \pm 1)-atan2(a, b) θ=atan2(sin(α+θ),cos(α+θ))atan2(sin(α),cos(α))=atan2(0,±1)atan2(a,b)


求方程: a ⋅ c o s ( θ ) + b ⋅ s i n ( θ ) = c a \cdot cos(\theta) + b \cdot sin(\theta) = c acos(θ)+bsin(θ)=c

令: a = a 2 + b 2 s i n ( α ) ⇒ s i n ( α ) = a a 2 + b 2 , b = a 2 + b 2 c o s ( α ) ⇒ c o s ( α ) = b a 2 + b 2 a=\sqrt{a^{2}+b^{2}}sin(\alpha) \Rightarrow sin(\alpha)=\frac{a}{\sqrt{a^{2}+b^{2}}}, b=\sqrt{a^{2}+b^{2}}cos(\alpha) \Rightarrow cos(\alpha)=\frac{b}{\sqrt{a^{2}+b^{2}}} a=a2+b2 sin(α)sin(α)=a2+b2 a,b=a2+b2 cos(α)cos(α)=a2+b2 b

则有, a 2 + b 2 s i n ( α ) c o s ( θ ) + a 2 + b 2 c o s ( α ) s i n ( θ ) = c \sqrt{a^{2}+b^{2}}sin(\alpha)cos(\theta)+\sqrt{a^{2}+b^{2}}cos(\alpha)sin(\theta)=c a2+b2 sin(α)cos(θ)+a2+b2 cos(α)sin(θ)=c

即, a 2 + b 2 s i n ( α + θ ) = c ⇒ s i n ( α + θ ) = c a 2 + b 2 \sqrt{a^{2}+b^{2}}sin(\alpha+\theta)=c \Rightarrow sin(\alpha+\theta)=\frac{c}{\sqrt{a^{2}+b^{2}}} a2+b2 sin(α+θ)=csin(α+θ)=a2+b2 c

那么, c o s ( α + θ ) = ± a 2 + b 2 − c 2 a 2 + b 2 cos(\alpha+\theta)=\pm \frac{\sqrt{a^{2}+b^{2}-c^{2}}}{\sqrt{a^{2}+b^{2}}} cos(α+θ)=±a2+b2 a2+b2c2

故, θ = a t a n 2 ( s i n ( α + θ ) , c o s ( α + θ ) ) − a t a n 2 ( s i n ( α ) , c o s ( α ) ) = a t a n 2 ( c , ± a 2 + b 2 − c 2 ) − a t a n 2 ( a , b ) \theta= atan2(sin(\alpha+\theta), cos(\alpha+\theta)) - atan2(sin(\alpha), cos(\alpha))= atan2(c, \pm \sqrt{a^{2}+b^{2}-c^{2}}) - atan2(a, b) θ=atan2(sin(α+θ),cos(α+θ))atan2(sin(α),cos(α))=atan2(c,±a2+b2c2 )atan2(a,b)

### 六轴机器人逆运动学求解方法 对于六轴机器人逆运动学求解,目标是在已知末端执行器的位置和姿态的情况下,计算出各关节的角度。这一过程通常较为复杂,因为可能存在多个解决方案或无解的情况。 #### 解析法求解逆运动学 解析法是一种直接通过数学推导来获得关节角度的方法。这种方法依赖于具体的机械臂结构参数,并利用三角函数和其他几何关系建立方程组。然而,由于其高度依赖特定的机构设计,在通用性和灵活性方面存在局限性[^1]。 ```python import numpy as np def analytical_inverse_kinematics(end_effector_pose): """ 使用解析法求解六轴机器人逆运动学 参数: end_effector_pose (list): 末端执行器的目标位置[x,y,z] 和 姿态[Rx,Ry,Rz] 返回: joint_angles (list): 各个关节的角度值 """ # 初始化变量并设置初始猜测值 L = [0.5, 0.4, 0.3] # 链接长度假设值 theta_guesses = [np.pi / 6, -np.pi / 8, np.pi / 7, -np.pi / 9, np.pi / 10, -np.pi / 11] # 计算具体公式... pass # 此处省略了详细的数学运算逻辑 ``` #### 数值法求解逆运动学 数值法则是采用迭代算法逐步逼近最优解的方式来进行求解。这类方法能够处理更广泛的机器人构型,并且更容易适应不同的应用场景需求。常见的数值优化技术包括牛顿拉夫森法、梯度下降等。MATLAB Robotics System Toolbox 提供了一些内置功能可以帮助简化此过程[^2]。 ```matlab % MATLAB代码片段展示如何使用Robotics System Toolbox进行数值求解 robot = importrobot('kuka_lbr.urdf'); % 导入URDF模型文件定义的机器人对象 ik = inverseKinematics(); % 创建一个新的IK求解器实例 configInitial = homeConfiguration(robot); % 获取默认配置作为起始点 poseGoal = trvec2tform([0.5; -0.2; 0.7])*eul2tform([pi/4 pi/6 pi/3]); % 定义期望的姿态矩阵 weights = [1 1 1 1 1 1]; % 设置权重向量用于调整不同维度的重要性程度 withinBounds = @(q) all(inLimits(q, robot)); % 自定义约束条件判断函数 jointAngles = ik(poseGoal, configInitial, weights, withinBounds); % 执行IK求解得到关节角结果 disp(jointAngles); ``` #### 上位机控制系统中的应用 在实际工程项目里,为了方便操作人员输入指令并与硬件交互,往往还需要开发专门的应用程序——即所谓的“上位机”。这些应用程序可以通过图形化界面接收用户的命令并将它们转化为适合底层控制器理解的数据格式发送出去;同时也可以实时监控设备状态反馈信息以便及时作出响应措施[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值