【大模型开发】Quantization(量化)技术与案例代码分析

以下内容将从量化(Quantization)核心概念常用方法在大模型上的应用场景,以及具体可运行的示例代码四个方面进行剖析,帮助你理解并动手实践大模型的量化技术,以便在推理推断(Inference)或部署时节省计算和存储成本。


一、什么是量化(Quantization)

量化(Quantization)是将模型参数(或激活值)从高精度(如 FP32 浮点格式)映射到低精度(如 INT8 或 INT4)以减小模型尺寸、降低计算资源需求的一种重要技术。它在推理场景常用来加速计算减少显存/内存占用

对于大模型(如 GPT、BERT、LLAMA 等上亿到上千亿参数量级的模型),量化意义更为突出:

  • 显著减少权重存储体积:例如从 FP32 到 INT8,可使模型权重大小缩小 4 倍。
  • 提升推理吞吐:部分硬件(如 GPU TensorCore、CPU VNNI 指令等)对低精度运算有更高效的指令支持。
  • 降低部署成本:减少内存/GPU 显存消耗,降低分布式部署规模与能耗。

二、常用的量化方法

1. 后量化(Post-Training Quantization, PTQ)

该方法不需在训练时引入量化逻辑,而是在训练完成后,对模型进行离线量化。常见流程是:

  1. 使用少量校准数据(calibration data)在模型的激活分布上统计 min-max 或更复杂的统计信息;
  2. 根据统计信息选择量化参数(缩放因子 scale、零点 zero_point);
  3. 将模型的权重、激活进行映射(如 FP32 → INT8)。

优点

  • 无需重新训练模型,部署简单。
    缺点
  • 精度可能下降较多,尤其在激活分布复杂或极值较多时。

2. 量化感知训练(Quantization Aware Training, QAT)

在模型训练的过程中,显式地模拟量化误差,让模型学会适应量化后的数值分布。

  1. 在正向传播时插入“Fake Quantization”节点,将 FP32 中间结果映射到量化格式并再映射回 FP32;
  2. 反向传播时梯度在这之上进行,模型逐渐学会抵抗量化带来的数值抖动;
  3. 最终训练好的模型可以直接转换为低精度部署。

优点

  • 精度更高,尤其是 8-bit 或 4-bit 时,精度损失较小。
    缺点
  • 训练过程更复杂,需要可用训练数据,并且训练时间增加。

3. 动态量化(Dynamic Quantization)

在推理阶段,对于权重使用低精度存储,而对于激活值在运行时动态计算量化参数(通常按层来做),再进行低精度计算。

  • 优点:不需要完整的校准步骤,也不需要重训;推理端自动计算激活的量化参数。
  • 缺点:量化精度不一定最优,对激活分布特别敏感。

在 PyTorch 中,torch.quantization.quantize_dynamic 就是一种快速给线性层做动态量化的接口。

4. 其它增强方法

  • 混合精度 + 量化:例如部分层用 FP16,部分层用 INT8。
  • 逐通道量化 vs 逐张量量化:逐通道量化指为每个通道/列使用单独的 scale/zero_point,进一步提高精度。
  • 群组量化 / 块量化(特别是 4-bit 量化时):将若干参数分块共享量化参数,减少信息损失。
  • 对称量化 vs 非对称量化

三、大模型量化的应用场景与注意事项

  1. 推理加速:在 CPU 端或 GPU 端进行 8-bit / 4-bit 量化可减少计算量,提高吞吐;在部分硬件(如英伟达 GPU、英特尔 CPU)能明显获益。
  2. 压缩存储:超大模型(如数十亿 ~ 千亿参数)的存储成本高,通过量化可减小模型尺寸。
  3. 边缘部署:在移动端或嵌入式设备中,使用 INT8(乃至更低)可以极大减小内存占用和功耗。

注意事项

  • 大模型的激活分布复杂,简单的 min-max 量化效果可能欠佳,需要更复杂的量化策略或校准数据。
  • 量化后精度损失要有心理预期;若对精度要求极高,可能需量化感知训练(QAT)。
  • 部分 Transformer 模块(如 LayerNorm、Softmax)不易直接量化,需要特殊处理或保留在 FP16/FP32。

四、可运行示例:使用 PyTorch 动态量化 GPT-2

下面我们以一个小规模 GPT-2 模型(如 gpt2)为例,在 PyTorch 中使用动态量化演示从 FP32 -> INT8 的过程,减少模型权重占用并观测推理性能的变化。此示例适用于 CPU 端(CPU 动态量化),GPU 上的 8-bit 通常需要其他库(如 bitsandbytes、TensorRT 等)辅助。

环境准备

  • Python 3.7+
  • pip install torch transformers (确保与硬件/系统兼容)

4.1 导入依赖并加载 GPT2 FP32 模型

import torch
import time
from transformers import GPT2LMHeadModel, GPT2TokenizerFast

# 加载 GPT2 模型和分词器
model_name = "gpt2"  # 也可选 gpt2-medium, gpt2-large 等
tokenizer = GPT2TokenizerFast.from_pretrained(model_name)
model_fp32 = GPT2LMHeadModel.from_pretrained(model_name)
model_fp32.eval()  # 推理模式

# 简单测试
input_text = "Hello, I'm a language model"
inputs = tokenizer.encode(input_text, return_tensors="pt")

with torch.no_grad():
    start_time = time.time()
    output_fp32 = model_fp32(inputs)
    end_time = time.time()

print("FP32 推理时间: {:.4f} s".format(end_time - start_time))
print("输出 logits 大小:", output_fp32.logits.shape)

上述代码将下载并加载一个 GPT-2 Base 大小的模型(约 117M 参数,约 500 MB 左右的 FP32 权重大小)。然后对一小段文本做简单推理,并计时。

4.2 动态量化(CPU)

# 仅对 Linear 层进行动态量化
# dtype=torch.qint8 指定 8-bit
model_int8 = torch.quantization.quantize_dynamic(
    model_fp32, 
    {torch.nn.Linear}, 
    dtype=torch.qint8
)

# 测试模型大小
# 注意:此方式只是测 Python 进程内存占用,不是最准确。
# 如果想看序列化后大小,可把模型保存后再看文件大小。
def get_size_of_model(model):
    torch.save(model.state_dict(), "temp.p")
    size_mb = round(os.path.getsize("temp.p")/(1024*1024), 2)
    os.remove('temp.p')
    return size_mb

import os
size_fp32 = get_size_of_model(model_fp32)
size_int8 = get_size_of_model(model_int8)

print("FP32 模型大小: {} MB".format(size_fp32))
print("INT8 模型大小: {} MB".format(size_int8))

这里我们使用 PyTorch 的 quantize_dynamic API 对模型中的所有 Linear 层自动插入量化逻辑,转换成 INT8 存储和运算。对于 GPT-2 这种大量全连接层(线性层)的 Transformer 结构,大部分权重可以被量化为 8-bit。

注意:在 CPU 上动态量化通常只对 LinearLSTM 之类有效果,而像 LayerNorm、Softmax 等操作默认保持 FP32。

4.3 INT8 模型推理测试

# 再次进行推理,比较推理耗时
with torch.no_grad():
    start_time = time.time()
    output_int8 = model_int8(inputs)
    end_time = time.time()

print("INT8 推理时间: {:.4f} s".format(end_time - start_time))
print("输出 logits 大小:", output_int8.logits.shape)

# 简单比较输出相似度
logits_diff = torch.abs(output_fp32.logits - output_int8.logits)
print("FP32 与 INT8 logits 平均差异:", logits_diff.mean().item())
  • 推理耗时:可能会因为硬件(CPU 类型、指令集支持)不同而有提速相似甚至略变慢(在部分老旧 CPU 上 INT8 速度提升并不明显;在支持 VNNI/BF16 等新指令集的 CPU 上会有提升)。
  • 模型精度:可以用差异来简单度量。若差异过大,说明量化损失较大;一般来说 GPT-2 在小样本测试时差异不会非常大,但也要看下游任务的评测指标。

五、更进一步:大模型的 8-bit / 4-bit GPU 量化示例

如果需要在GPU上部署 8-bit 或 4-bit 大模型(如 LLaMA2、BERT-Large、BLOOM 等),可以借助 bitsandbytesGPTQ 等工具,或者使用 Transformers 集成的 8-bit/4-bit 加载 功能。以下以 bitsandbytes 的 8-bit 为例简单演示:

pip install transformers accelerate bitsandbytes
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

model_name = "meta-llama/Llama-2-7b-chat-hf"  # 仅做示例,需有相应的访问权限

tokenizer = AutoTokenizer.from_pretrained(model_name)

# 加载 8-bit 量化模型
model_8bit = AutoModelForCausalLM.from_pretrained(
    model_name, 
    load_in_8bit=True,            # 8-bit quantization
    device_map="auto"             # 根据可用 GPU 自动分配
)

# 进行推理
input_text = "How do I cook pasta?"
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")

with torch.no_grad():
    outputs = model_8bit.generate(**inputs, max_new_tokens=50)

print("Generated:", tokenizer.decode(outputs[0], skip_special_tokens=True))
  • load_in_8bit=True 将权重加载为 8-bit(使用 bitsandbytes 的 bnb.nn.Int8Params)。
  • 也可尝试 load_in_4bit=True(4-bit 量化)以进一步压缩,不过对硬件有更多要求(需要 GPU 算力架构支持,例如 Ampere 架构或以上),量化误差也更大。

六、总结

  1. 量化(Quantization)将 FP32 等高精度权重和激活映射到低精度(INT8/INT4 等)的过程,用于减少存储和加速推理
  2. 常见量化策略包括后量化 (PTQ)量化感知训练 (QAT)动态量化等,每种方法对精度易用性硬件要求影响不同。
  3. 大模型(GPT、BERT、LLAMA 等)中,量化技术尤为关键,可显著减少内存/显存占用,加快推理速度
  4. PyTorch 自带的动态量化可快速在 CPU 上进行 8-bit 部署;对于 GPU 或更激进的 4-bit 量化,通常需借助bitsandbytesGPTQTensorRT 等工具。
  5. 量化后需要根据下游任务测试精度损失,若精度下降过大,可能需要更精细的量化方法或引入QAT 来弥补。

参考与延伸

通过以上示例与实践,希望能帮助你快速上手大模型的量化,加速与压缩部署并在实际场景中取得良好的平衡。

哈佛博后带小白玩转机器学习】 哔哩哔哩_bilibili

总课时超400+,时长75+小时

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值