【大模型开发】 RAG+AI 工作流+智能体(AI Agent) 打造智能化开发方案

以下内容将从概念和典型应用流程的角度,为你介绍如何将 RAG(Retrieval-Augmented Generation)+ AI 工作流 + Agent 技术相结合,打造一条以知识检索、自动化推理、执行为核心的智能化程序开发方案,并结合常见的开发框架做一些介绍。

目录:RAG + AI 工作流 + Agent 开发指南

  1. 引言
    1.1 RAG、AI 工作流、Agent 的概念
    1.2 为什么要结合这三者?
    1.3 典型应用场景

  2. 核心技术概述
    2.1 RAG(Retrieval-Augmented Generation)原理
    2.2 AI 工作流的自动化架构
    2.3 Agent 的核心机制与执行逻辑

  3. 开发流程
    3.1 知识库与数据准备
    3.2 搭建 RAG 检索与生成模块
    3.3 设计 AI 工作流与任务编排
    3.4 Agent 的配置与工具管理
    3.5 RAG + Agent + Workflow 的整合

  4. 技术选型与开发框架
    4.1 向量数据库(FAISS、Milvus、Pinecone、Weaviate)
    4.2 RAG 相关 Python 库(LangChain、LlamaIndex、Haystack)
    4.3 AI 工作流工具(Airflow、Kubeflow、MLflow)
    4.4 Web API 与前端框架(FastAPI、Flask、Streamlit、Gradio、React、Vue)

  5. 代码示例:RAG + Agent 集成开发
    5.1 RAG 组件的构建
    5.2 Agent 工具调用的实现
    5.3 综合案例:LangChain + 向量数据库 + Agent 自动化执行

  6. 最佳实践与优化
    6.1 逐步迭代:从简单到复杂
    6.2 提示工程(Prompt Engineering)优化
    6.3 数据隐私与安全控制
    6.4 监控、日志与性能评估

  7. 总结与展望
    7.1 未来发展趋势
    7.2 在不同应用领域的扩展思路
    7.3 进一步学习和实践方向


一、核心概念简介

  1. RAG(Retrieval-Augmented Generation)

    • RAG 的核心思路是把检索(Retrieval)和生成(Generation)相结合,通常的做法是:
      1. 有一个向量数据库或其他检索系统,用于存储和检索外部文档、知识库等;
      2. 用户的查询或上游处理过的输入先进行向量化(Embedding),再到向量数据库中做相似度检索,得到与问题最相关的上下文;
      3. 将“原始问题 + 检索到的上下文”一起发送给大型语言模型(LLM)进行答案生成或推理。
    • 这样做可以让模型在回答问题或执行任务时**“基于真实数据”,而不是只依赖模型自身参数**中学到的知识,从而获得更准确或可溯源的结果。
  2. AI 工作流

    • 这里指的是从数据获取 → 数据处理(预处理/特征提取/清洗) → 模型推理 → 结果输出,或更广泛的开发运维(DevOps/MLOps)流程。可以用一些流水线或编排工具(如 Airflow、Kubeflow、MLflow 等)进行自动化。
    • 对于 ChatGPT 这样的应用场景,也可以用诸如 LangChainLlamaIndex(GPT Index) 等库来构建对话式的 AI 工作流;或者用 Haystack 等来做文档问答。
  3. Agent(智能代理)

    • Agent 可以理解为“能够主动调用外部工具执行指令的语言模型”。
    • 例如:当用户向 ChatGPT 发出一个“需要调用数据库查询 + 算数学题 + 访问某些外部 API”的复杂任务时,Agent 会把任务拆解为若干子任务,在需要的时候自动调用相应的工具(如计算器、API 调用等),最后汇总结果并给出最终回答。
    • 代表性实现有 LangChain AgentsOpenAI Function Calling 等,通过一系列“思维链”(Chain of Thought)或“计划-执行-反思”方式实现更灵活的自动化。

二、为什么要结合 RAG + AI 工作流 + Agent?

  • RAG:给模型注入“外部知识”,解决大模型参数内知识不足或过时的问题,并保证可溯源。
  • AI 工作流:让数据处理、模型推理、结果产出更加自动化、可控。
  • Agent:让模型在出现更复杂需求时,能够动态调用工具或采取相应动作,而不是被动地充当一个“回答机器”。

这样就可以在一个系统内实现“检索知识 → 推理生成 → 工具执行 → 反馈验证 → 最终结果”的完整循环,实现**“智能化自动化”**。


三、典型的开发流程

以下是一个通用的、分步骤的研发思路,供你在项目中参考和实践(可根据需求调整):

  1. 知识库与数据准备

    1. 数据收集:收集你的项目所需的文档、数据库、API 接口说明等信息。
    2. 数据清洗 & 切分:如果是文本,需要做清洗、分词、切分段落等;如果是表格或结构化数据,可以直接保留合适的 Schema。
    3. 向量化索引:使用特定的向量嵌入(Embedding)模型(比如 OpenAI Embedding、Sentence-BERT、Llama 等)将文本或数据向量化,并存储在向量数据库中(如 Milvus、FAISS、Pinecone、Weaviate 等)或普通数据库里(如果量小也可用 SQLite + cosine 相似度)。
  2. 搭建检索 & RAG 模块

    • 检索部分:基于用户查询或上游需求,将用户输入向量化后与数据库中存储的向量比对,找出最相关的文档或段落(Top-k)。
    • 拼接上下文:将检索到的文档片段拼到用户的原始问题后面,形成更“上下文丰富”的提示信息(Prompt)。
    • LLM 调用:将拼接好的 Prompt 发送给 LLM,得到模型的回答。
    • 可溯源输出(可选):生成后的回答可以附上“引用来源链接”“文档ID”等,以便用户追溯结果来源。
  3. AI 工作流设计

    • 如果项目规模较大,往往会包含ETL(Extract-Transform-Load)流程、数据清洗定时任务模型更新等,可以用AirflowKubeflowMLflow 做流水线管理。
    • 对于应用开发者,也可以在 Python/Node.js/Java 等常见后端框架中,直接把 RAG 流程封装成一个服务接口(如用 FastAPIFlask 在 Python 中搭建服务)。
  4. Agent 架构 + 工具管理

    • 选定一个 Agent 开发框架,例如 LangChain(其中包含 Agents 的概念),或使用 OpenAI Function Calling 结合自定义的“工具”列表。
    • 配置 Agent
      1. 定义可供 Agent 调用的“工具”集合(工具可以是:数据库查询、搜索引擎、计算器、第三方 API、Python REPL 等)。
      2. 编写每个工具的调用函数与描述,让 LLM 知道如何调用它们。
    • Agent 执行流程
      1. 当用户提出一个需要复杂操作的问题时,Agent 会先分析需求;
      2. 如果需要调用工具,就会生成调用指令及参数;
      3. 工具执行后返回结果,再交给 LLM/Agent 做进一步推理和回答;
      4. 重复以上“思考-调用工具-总结”的循环,直到得到最终答复给用户。
  5. 整合:RAG + Agent + Workflow

    • (1) 输入到 Agent:用户输入或上游任务 → Agent 先判断是否要调用“RAG 检索工具”来获取知识;
    • (2) 检索 + 反馈:如果需要检索文档,就调用 RAG 模块拿到上下文,返回给 Agent;
    • (3) 生成中间回答:Agent 再次推理,可能再调用别的工具(数据库查询、计算 API 等),反复迭代;
    • (4) 最终生成:Agent 整理出最终对用户的回答或动作结果;
    • (5) 工作流编排:用 Airflow/Kubeflow 等在上层把整个过程分段管理,如定时更新向量索引、定时更新模型参数、触发某些回调函数等,形成“离线批处理 + 在线推理”的一体化解决方案。

四、常用框架 & 工具选型

  1. 向量数据库

    • FAISS(开源、Facebook AI Research 出品,本地化使用方便)
    • Milvus(开源、分布式、适合大规模向量存储)
    • PineconeWeaviate(云端服务,提供向量检索和管理)
  2. RAG 和 Agent 相关 Python 库

    • LangChain:非常流行,可以快速搭建包含 Prompt Templates、Chains、VectorStores、Agents 等组件的对话式应用。
    • LlamaIndex(GPT Index):提供了从文档到索引管理的机制,也支持自动化检索、查询、路由等功能。
    • Haystack:德国公司 deepset 出品,专注于文档问答、检索;功能类似,稳定性较好。
  3. 工作流编排 & MLOps

    • Airflow:使用 Python 定义 DAG(有向无环图)任务流,擅长调度定时任务。
    • Kubeflow:基于 Kubernetes 的机器学习工作流编排,适合大型分布式训练、部署等场景。
    • MLflow:更关注模型的实验管理、版本管理、部署等,能与上面工具结合。
  4. 应用层

    • FastAPI / Flask:在 Python 中做 Web API 封装,对外提供 RESTful 或 WebSocket 服务。
    • Streamlit / Gradio:快速搭建原型或 Demo 前端界面,适合内部测试或展示。
    • React / Vue / Node.js:在前端或全栈的角度封装与对话相关的用户界面。

五、示例:LangChain + 向量数据库 + Agent 的整合流程

以 Python 为例,结合 LangChain 做一个“Agent + RAG 问答”的简化示例(仅展示核心思路):

from langchain import OpenAI, LLMChain
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS  # 示例:使用 FAISS
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType

# 1. 加载/构建向量数据库
embeddings = OpenAIEmbeddings(openai_api_key="YOUR_API_KEY")
vector_store = FAISS.from_texts(["文档片段1", "文档片段2", ...], embedding=embeddings)

# 2. 定义检索工具 (RAG)
def rag_tool_func(query: str):
    # 检索相关文档
    docs = vector_store.similarity_search(query, k=3)
    contents = [doc.page_content for doc in docs]
    return "\n".join(contents)

rag_tool = Tool(
    name="RAG Retriever",
    func=rag_tool_func,
    description="检索相关文档。输入查询,输出检索到的文本内容。"
)

# 3. 定义其它工具(可选,如计算器、数据库查询等)
def calculator_tool_func(expression: str):
    return str(eval(expression))

calculator_tool = Tool(
    name="Calculator",
    func=calculator_tool_func,
    description="进行数学表达式的计算,输入纯字符串表达式。"
)

# 4. 初始化 LLM 和 Agent
llm = OpenAI(temperature=0, openai_api_key="YOUR_API_KEY")
agent = initialize_agent(
    tools=[rag_tool, calculator_tool],  # 可以扩展更多
    llm=llm,
    agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
    verbose=True
)

# 5. 进行对话或任务执行
question = "请先检索文档,然后告诉我其中提到的年度增长率是多少,并帮我算一下增长3年的结果是多少?"
result = agent.run(question)
print("Agent 输出:", result)

流程

  1. 用户的问题 → Agent 分析 → 如果需要检索,自动调用 RAG Retriever
  2. 得到检索文档内容后,Agent 会再根据描述调用 Calculator
  3. 最终给出综合回答并输出给用户。

这种模式可以很容易地拓展到:对接数据库、阅读 Excel、访问外部 API、自动写入/更新数据 等操作,真正做到“智能化自动化程序”的开发。


六、实战建议

  1. 先从简入手

    • 刚开始不要把所有工具一次性加进 Agent,先做一个“RAG + 问答”原型跑通流程;
    • 再逐步添加你需要的功能和工具,避免过度设计导致调试困难。
  2. 注重提示工程(Prompt Engineering)

    • 无论是 RAG 还是 Agent,生成式模型的提示(Prompt)都对最终效果极为关键;
    • 需要结合业务逻辑,给出清晰指令和上下文格式,避免模型答非所问或误调用工具。
  3. 关注隐私和安全

    • 使用向量数据库或外部 API 时,需要明确数据的保密级别;
    • 对 Agent 的权限做好限制,不要让 Agent 拥有不必要的访问或执行能力(例如对系统文件的读写权限要谨慎)。
  4. 监控和评估

    • 可以做对话日志调用日志的记录,后续再做改进;
    • 对输出结果进行评分、反馈,形成一个持续完善的闭环。

总结

通过整合 RAG(检索增强)、AI 工作流(编排与自动化)、Agent(可动态调用工具) 三大模块,可以搭建一个既能“基于真实知识回答”又能执行各种外部操作的“智能化自动化程序”。开发时常用到以下思路和工具:

  • 核心工作流:数据预处理、向量索引、RAG 检索、LLM 生成、Agent 调用工具;
  • 常见 Python 框架:LangChain / LlamaIndex / Haystack + 向量数据库 + 工作流编排(Airflow/Kubeflow);
  • Agent:在自动化执行任务时,根据需要配置可被调用的外部 API、数据库、计算工具等。

希望以上内容能为你的智能化自动化程序开发提供完整的思路与实践指南。如有更多具体需求或细节问题,欢迎进一步探讨。

哈佛博后带小白玩转机器学习
总课时超400+,时长75+小时

### RAGAI结合的工作流实现方式 RAG(Retrieval-Augmented Generation)是一种将检索增强引入生成式人工智能的技术框架。其核心理念在于通过结合检索技术和大语言模型的能力,提升生成内容的相关性和准确性。 #### 技术架构概述 RAG工作流程通常分为三个主要部分:数据索引、多路召回和融合重排序[^1]。以下是具体实现细节: - **数据索引** 数据索引是整个 RAG 流程的基础环节。原始文档被处理成适合向量化的形式,并存储于高效的向量数据库中。这种设计使得后续的相似度查询能够快速完成。现代 RAG 系统支持多种类型的输入源,包括结构化数据表、非结构化文本文件甚至多媒体资源[^2]。 - **多路召回** 多路召回机制允许系统从多个维度获取潜在相关的信息片段。例如,在面对复杂查询时,不仅依赖单一语义匹配路径,还会综合考虑关键词频率分布等因素来扩大候选集范围。这种方法有效提高了最终结果覆盖广度的同时也保持了一定精度水平。 - **融合重排序** 融合重排序是对初步筛选出来的候选项进一步工的过程。它利用更复杂的算法评估各个备选答案的质量得分,并据此调整顺序排列位置。此步骤对于确保输出最贴近实际需求至关重要。 #### 高级特性扩展 除了基本功能外,现代化 RAG 解决方案还提供了额外增值组件以满足不同场景下的特殊要求: - 支持配置不同类型的大规模预训练语言模型 (LLM),以便适应特定领域内的专业知识表达习惯; - 向量嵌入技术灵活定制,适配客户自有资料库特点; - 易于集成的标准 RESTful APIs 接口定义,简化第三方应用程序对接难度。 此外值得注意的是,“Agentic RAG”作为最新发展趋向之一,尝试将传统意义上独立运作的两项关键技术——即 Retrieval Augmentation 和 Autonomous Agent ——结合起来形成全新范式。这种方式有望在未来带来更智能化的服务体验[^3]。 ```python import faiss from sentence_transformers import SentenceTransformer def build_index(documents): model = SentenceTransformer('all-MiniLM-L6-v2') embeddings = model.encode(documents, convert_to_tensor=True) dimension = embeddings.shape[1] index = faiss.IndexFlatL2(dimension) index.add(embeddings.cpu().numpy()) return index def search(index, query, top_k=5): model = SentenceTransformer('all-MiniLM-L6-v2') vector = model.encode(query).reshape(1,-1) distances, indices = index.search(vector,top_k) return distances, indices ``` 以上代码展示了如何构建简单的 FAISS 向量索引并执行基础搜索操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值