基于示例详细讲解模型PTQ量化的步骤(含代码)

详细探讨模型PTQ量化每个步骤,涉及更多的技术细节和实际计算方法,以便更好地理解PTQ(Post-Training Quantization,训练后量化)的全过程。

1. 模型训练

我们假设已经训练了一个卷积神经网络(CNN),例如VGG-16。训练完成后,我们得到了一个以32位浮点数表示的模型权重和激活值。

2. 收集统计信息

在量化之前,我们需要从模型中收集统计信息,以帮助确定量化的参数。

收集权重和激活的统计信息

1. 权重统计

对于每个卷积层和全连接层:

  • 最大值和最小值:通过遍历模型的每个权重矩阵,计算权重的最大值和最小值。

    import numpy as np
    
    def get_weight_stats(weights):
        max_val = np.max(weights)
        min_val = np.min(weights)
        return max_val, min_val
    
  • 示例

    weights_conv1 = model.conv1.weight.data.numpy()  # 获取卷积层1的权重
    max_weight_conv1, min_weight_conv1 = get_weight_stats(weights_conv1)
    

2. 激活统计

激活值的统计信息通常在校准过程中收集:

  • 最大值和最小值:将校准数据集通过模型,记录每个层的激活值的统计信息。

    def get_activation_stats(model, dataloader):
        activations = []
        for inputs, _ in dataloader:
            outputs = model(inputs)
            activations.append(outputs.detach().numpy())
        max_activation = np.max(activations)
        min_activation = np.min(activations)
        return max_activation, min_activation
    
  • 示例

    max_activation, min_activation = get_activation_stats(model, calibration_dataloader)
    

3. 选择量化方案

根据收集到的统计数据,选择量化方案并计算量化参数。

选择量化位宽
  • 通常选择8位整数(INT8),即量化到[-128, 127]范围内。
计算量化参数

1. 对称量化

对于权重:

  • 计算缩放因子

    def calculate_scale(min_val, max_val, int_min, int_max):
        scale = (max_val - min_val) / (int_max - int_min)
        return scale
    
  • 量化公式

    def quantize_weight(weights, scale, int_min, int_max):
        quantized_weights = np.clip(np.round(weights / scale), int_min, int_max)
        return quantized_weights
    
  • 示例

    scale_weight = calculate_scale(min_weight_conv1, max_weight_conv1, -128, 127)
    quantized_weights_conv1 = quantize_weight(weights_conv1, scale_weight, -128, 127)
    

2. 非对称量化

对于激活值:

  • 计算缩放因子和零点

    def calculate_activation_params(min_val, max_val, int_min, int_max):
        scale = (max_val - min_val) / (int_max - int_min)
        zero_point = int_min - np.round(min_val / scale)
        return scale, zero_point
    
  • 量化公式

    def quantize_activation(activations, scale, zero_point, int_min, int_max):
        quantized_activations = np.clip(np.round(activations / scale) + zero_point, int_min, int_max)
        return quantized_activations
    
  • 示例

    scale_activation, zero_point = calculate_activation_params(min_activation, max_activation, 0, 255)
    quantized_activations = quantize_activation(activation_data, scale_activation, zero_point, 0, 255)
    

4. 量化权重

权重量化步骤:

  1. 计算缩放因子

    scale = calculate_scale(min_weight, max_weight, -128, 127)
    
  2. 应用量化公式

    quantized_weights = quantize_weight(weights, scale, -128, 127)
    
  3. 存储量化参数

    保存量化的缩放因子和偏移量,这在推理阶段用于反量化。

    np.save('quantized_weights.npy', quantized_weights)
    np.save('weight_scale.npy', scale)
    

5. 量化激活

激活量化步骤:

  1. 计算激活的缩放因子和零点

    scale, zero_point = calculate_activation_params(min_activation, max_activation, 0, 255)
    
  2. 应用量化公式

    quantized_activations = quantize_activation(activations, scale, zero_point, 0, 255)
    
  3. 存储量化参数

    保存激活的量化参数,用于反量化。

    np.save('activation_scale.npy', scale)
    np.save('activation_zero_point.npy', zero_point)
    

6. 模型校准

微调(Fine-Tuning)

  • 步骤

    • 将量化后的模型加载并用量化参数初始化。
    • 用量化后的模型和校准数据集进行轻微的训练,以优化量化效果。
    from torch.optim import Adam
    
    # 定义优化器和损失函数
    optimizer = Adam(model.parameters(), lr=1e-5)
    criterion = torch.nn.CrossEntropyLoss()
    
    # 轻微训练
    model.train()
    for epoch in range(1):
        for inputs, targets in calibration_dataloader:
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, targets)
            loss.backward()
            optimizer.step()
    

7. 验证和评估

步骤

  1. 测试量化模型

    • 使用测试数据集对量化后的模型进行评估,比较其与原始浮点模型的性能。
    model.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for inputs, targets in test_dataloader:
            outputs = model(inputs)
            _, predicted = torch.max(outputs, 1)
            total += targets.size(0)
            correct += (predicted == targets).sum().item()
    
    accuracy = correct / total
    print(f'Test Accuracy: {accuracy * 100:.2f}%')
    
  2. 分析结果

    • 比较量化模型和原始浮点模型的准确率,确定量化对模型性能的影响。
    • 如果量化后性能下降明显,可能需要调整量化参数或进行进一步微调。

8. PTQ的优点和挑战

优点:

无需重新训练:PTQ不需要重新训练模型,只需在现有模型上进行量化,节省了时间和计算资源。
快速部署:量化后的模型可以更快地在资源受限的环境中部署,例如移动设备和嵌入式系统。
减少存储需求和计算复杂度:低精度表示减少了存储空间和计算开销,适合在硬件上加速计算。
挑战:

精度损失:量化可能导致模型性能下降,特别是当量化精度较低时。需要进行模型校准和评估来减小精度损失。
选择合适的量化参数:确定量化的位宽、范围和其他参数可能需要经验和实验来优化。
数据分布问题:如果数据分布非常复杂,简单的量化策略可能无法有效地捕捉数据的特性,导致精度损失。

总结

通过上述详细步骤,我们对一个训练好的CNN模型进行了PTQ。详细步骤包括从模型中收集统计信息、选择和计算量化参数、应用量化到权重和激活、进行模型校准以及最终的模型验证和评估。每个步骤涉及具体的计算和调整,以确保量化过程中的模型性能尽可能接近原始浮点模型。

  • 10
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PyTorch支持通过量化技术来压缩模型,减小模型大小和内存占用,并提高模型的推理性能。其中,PTQ(Post Training Quantization)是一种常见的量化方法,它可以在训练后对模型进行量化PTQ的基本思路是将原始模型中的浮点数参数转化为固定位宽的整数,从而减小模型的大小和内存占用,提高模型在嵌入式设备上的推理速度。在PTQ中,可以对权重、激活值、梯度等进行量化。 下面是使用PyTorch进行PTQ的基本流程: 1. 定义模型 首先需要定义一个PyTorch模型。 2. 定义量化方法 接下来需要定义量化方法。PyTorch提供了一些量化方法,可以根据实际需求进行选择。例如,可以使用torch.quantization.quantize_dynamic()方法进行动态量化,或者使用torch.quantization.quantize_static()方法进行静态量化。 3. 对模型进行量化 使用定义的量化方法对模型进行量化,将浮点数参数转化为整数参数。可以使用torch.quantization.prepare()方法对模型进行准备,使用torch.quantization.convert()方法进行转换。 4. 测试量化后的模型 量化完成后,需要测试量化后的模型,确保准确性没有明显下降。 下面是一个简单的示例代码,演示了如何使用PyTorch进行PTQ: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms from torchvision.models import resnet18 from torch.utils.data import DataLoader # 定义模型 model = resnet18() # 定义数据预处理 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) # 加载数据集 trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) trainloader = DataLoader(trainset, batch_size=128, shuffle=True) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) # 训练模型 for epoch in range(5): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() print('[Epoch %d] loss: %.3f' % (epoch + 1, running_loss / len(trainloader))) # 定义量化方法 quantization_method = torch.quantization.quantize_dynamic # 对模型进行量化 model.qconfig = torch.quantization.get_default_qconfig('fbgemm') quantized_model = quantization_method(model, qconfig_spec={nn.Linear}, dtype=torch.qint8) # 测试量化后的模型 quantized_model.eval() testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform) testloader = DataLoader(testset, batch_size=128, shuffle=False) correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = quantized_model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the test images: %d %%' % (100 * correct / total)) ``` 注意:PTQ可能会对模型的准确性产生一定的影响,因此需要根据实际情况进行调整。同时,PTQ的效果也受到数据集的影响,因此需要在实际应用中进行测试和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值