一、准备工作:
1、环境配置:
pip、conda换源:
pip临时换源:
pip install -i https://mirrors.cernet.edu.cn/pypi/web/simple some-package
# 这里的“https://mirrors.cernet.edu.cn/pypi/web/simple”是所换的源,“some-package”是你需要安装的包
设置pip默认源,避免每次下载依赖包都要加上一长串的国内源
pip config set global.index-url https://mirrors.cernet.edu.cn/pypi/web/simple
conda换源:
镜像站提供了 Anaconda 仓库与第三方源(conda-forge、msys2、pytorch 等),各系统都可以通过修改用户目录下的
.condarc
文件来使用镜像站。
不同系统下的
.condarc
目录如下:
Linux
:
${HOME}/.condarc
macOS
:
${HOME}/.condarc
Windows
:
C:\Users\<YourUserName>\.condarc
注意:
Windows
用户无法直接创建名为
.condarc
的文件,可先执行
conda config --set show_channel_urls yes
生成该文件之后再修改。
cat <<'EOF' > ~/.condarc
channels:
- defaults
show_channel_urls: true
default_channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
EOF
更多详细内容可移步至
MirrorZ Help
查看
2、模型下载:
Huggingface:
使用 Hugging Face 官方提供的
huggingface-cli
命令行工具。安装依赖:
pip install -U huggingface_hub
安装好依赖包之后,执行以下代码:
import os
from huggingface_hub import hf_hub_download # Load model directly
# 下载模型
os.system('huggingface-cli download --resume-download internlm/internlm-chat-7b --local-dir your_path')
# resume-download:断点续下(断网也可继续下载)
# local-dir:本地存储路径。(linux 环境下需要填写绝对路径)
hf_hub_download(repo_id="internlm/internlm-7b", filename="config.json")
# repo_id: 模型的名称
# filename: 下载的文件名称
ModelScope:
安装依赖:
pip install modelscope==1.9.5
pip install transformers==4.35.2
安装完成后:
import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm-chat-7b', cache_dir='your path', revision='master')
# cache_dir:最好写成绝对路径
OpenXLAB:
安装依赖:
pip install -U openxlab
执行代码:
from openxlab.model import download
download(model_repo='OpenLMLab/InternLM-7b', model_name='InternLM-7b', output='your local path')
二、InternLM智能对话 Demo:
1、准备硬件设备:显卡
目前显卡比较短缺,各位大佬各显神通吧,这里以
InternStudio
为例
2、进入开发机配置环境:
进入
conda
环境之后,使用以下命令从本地克隆一个已有的
pytorch 2.0.1
的环境,运行时间可能比较长,耐心等待
bash # 请每次使用 jupyter lab 打开终端时务必先执行 bash 命令进入 bash 中
conda create --name internlm-demo --clone=/root/share/conda_envs/internlm-base
然后用下面命令激活虚拟环境,并安装所需环境:
conda activate internlm-demo
————————————————————————————demo所需的环境依赖
# 升级pip
python -m pip install --upgrade pip
pip install modelscope==1.9.5
pip install transformers==4.35.2
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.24.1
3、模型下载:
根据之前介绍的模型下载的三种方式都可以实现模型的下载,但是速度相对较慢,这里我使用的是
InternStudio
平台的
share
目录下已经为我们准备好的
InternLM
模型。
mkdir -p /root/model/Shanghai_AI_Laboratory
cp -r /root/share/temp/model_repos/internlm-chat-7b /root/model/Shanghai_AI_Laboratory
4、代码准备:
在
/root
路径下新建
code</