1. ONNX (Open Neural Network Exchange)
简介
ONNX 是一个开放的深度学习模型交换格式和生态系统,最初由微软和Facebook联合推出。它本身不是推理引擎,而是一个中间表示格式,用于在不同深度学习框架(如 PyTorch、TensorFlow、Caffe2 等)之间互通模型。
核心特点
- 跨平台、跨框架:支持多种主流深度学习框架的模型导入导出。
- 丰富的算子库:支持常见的神经网络算子。
- 生态丰富:有 ONNX Runtime、OpenVINO、TensorRT、ncnn 等多种推理引擎支持 ONNX 格式。
- 易于部署:ONNX Runtime 支持多平台(Windows、Linux、Mac、Android、iOS)和多种硬件(CPU、GPU、NPU等)。
典型应用
- 模型跨平台迁移
- 统一模型格式后多端部署
2. OpenVINO (Open Visual Inference and Neural Network Optimization)
简介
OpenVINO 是 Intel 推出的深度学习推理优化工具包,专为 Intel 硬件(CPU、GPU、VPU、FPGA等)优化。它支持多种模型格式(包括 ONNX、TensorFlow、Caffe、MXNet等),并提供高效的推理引擎。
核心特点
- 硬件优化:对 Intel CPU、集成显卡、VPU(如Myriad)、FPGA 等有深度优化。
- 模型优化器:可将原始模型转换为 IR(中间表示)格式,进一步优化推理性能。
- 多后端支持:可自动选择最优硬件执行推理。
- 易于集成:支持C++、Python API,适合工业级部署。
典型应用
- 边缘计算、视频分析、工业视觉等场景
- Intel 硬件上的高性能推理
3. TensorRT
简介
TensorRT 是 NVIDIA 推出的高性能深度学习推理库,专为 NVIDIA GPU 优化。它支持 FP32、FP16、INT8 等多种精度,能极大提升推理速度和吞吐量。
核心特点
- 极致性能:对 NVIDIA GPU(包括 Jetson、Tesla、RTX等)有极致优化。
- 多精度支持:支持混合精度推理(FP32/FP16/INT8)。
- 图优化与融合:自动进行算子融合、层融合、内存优化等。
- ONNX 支持:可直接加载 ONNX 模型进行推理。
典型应用
- 自动驾驶、智能安防、云端推理等对性能要求极高的场景
- NVIDIA GPU 设备上的推理加速
4. ncnn
简介
ncnn 是腾讯优图实验室开源的高性能神经网络前向计算框架,专为移动端和嵌入式设备(如 Android、ARM Linux)优化,不依赖第三方深度学习库。
核心特点
- 轻量级:无第三方依赖,二进制体积小,适合移动端和嵌入式。
- 跨平台:支持 Android、iOS、Linux、Windows、树莓派等。
- 高效推理:对 ARM、x86、RISC-V、MIPS 等多种架构优化,支持 SIMD、Vulkan GPU 加速。
- 模型格式:支持 Caffe、ONNX、MNN、TNN 等模型转换。
典型应用
- 移动端 AI 应用(如美颜、滤镜、实时检测等)
- 资源受限设备的本地推理
对比分析
| 特性/框架 | ONNX | OpenVINO | TensorRT | ncnn |
|---|---|---|---|---|
| 定位 | 模型交换格式+推理引擎(ONNX Runtime) | Intel 硬件推理优化 | NVIDIA GPU 推理优化 | 移动端/嵌入式推理 |
| 硬件支持 | 跨平台(CPU/GPU/NPU等) | Intel CPU/GPU/VPU/FPGA | NVIDIA GPU | ARM/x86/RISC-V/Vulkan |
| 模型格式 | ONNX | ONNX/IR/TF/Caffe等 | ONNX/UFF/Caffe等 | ncnn/Caffe/ONNX等 |
| 性能优化 | 通用优化 | 针对Intel深度优化 | 针对NVIDIA深度优化 | 针对移动端深度优化 |
| 易用性 | 高 | 高 | 高 | 高 |
| 典型场景 | 跨平台部署 | Intel硬件推理 | NVIDIA GPU推理 | 移动端/嵌入式 |
| 精度支持 | FP32/FP16/INT8等 | FP32/FP16/INT8等 | FP32/FP16/INT8等 | FP32/FP16/INT8等 |
| API支持 | Python/C++等 | Python/C++等 | Python/C++等 | C++/Java/Android等 |
总结建议
- ONNX:适合模型跨平台迁移和统一格式,配合 ONNX Runtime 可通用部署。
- OpenVINO:Intel 硬件优选,边缘计算、工业视觉等场景推荐。
- TensorRT:NVIDIA GPU 推理加速首选,适合对性能极致要求的场景。
- ncnn:移动端、嵌入式设备首选,轻量高效,适合本地 AI 应用。
1854

被折叠的 条评论
为什么被折叠?



