代谢组学的相关分析数据库,MetaboAnalyst 5.0 使用指南

目前组学的数据越来越多。其中代谢组学也是其中一个热点。关于代谢组学的相关分析目前用的最多的还是MetaboAnalyst 。之前这个数据库一直都是4.0版本。最近刚刚更新了5.0的版本。趁着刚刚更新,我们也就来顺带的介绍这个数据库吧。

PS: 从18到现在被引次数就到了1700。可见这个数据库的权威以及研究代谢的人多呀

下载.jpeg

关于MetaboAnalyst。其主要是基于作者开放的一个R语言包MetaboAnalystR来进行分析了。如果有相关R语言操作基础的。也是可以使用这个包进行分析的。下载 (1).jpeg

 

 

数据库主要功能介绍

 

目前作者把代谢组学的数据分析基于不同的数据类型和分析目的分成了13个功能。我们可以基于这自己的数据类型和分析目的来选择不同的功能即可。

 

文章剩余内容<<<<

 

 

### METABOANALYST 使用教程和操作指南 METABOANALYST 是一款用于代谢数据分析的强大在线工具,提供了多种功能模块来支持数据处理、统计分析以及生物通路解析。对于初次使用者来说,了解其基本架构和主要特性是非常重要的。 #### 一、注册与登录 访问 METABOANALYST 官方网站并创建账户或直接通过社交媒体账号快捷登陆[^2]。这一步骤确保用户能够保存项目进度和个人设置以便后续调用。 #### 二、导入数据集 点击首页中的 "Upload Data" 按钮进入文件上传页面。这里支持多种形式的数据输入方式,包括但不限于文本文件(.txt),逗号分隔值文件 (.csv) 和 Excel 文件 [.xls(x)] 。值得注意的是,为了提高效率,建议提前整理好待分析样本的信息表头及数值格式[^3]。 #### 三、预处理阶段 完成数据加载之后,可以选择相应的预处理选项卡来进行必要的转换工作,比如缺失值填补、标准化等。这些步骤有助于消除噪声干扰因素从而获得更可靠的结果输出。 #### 四、执行核心分析流程 - **描述性统计**:提供关于变量分布特征的基础概述; - **差异表达检测**:识别不同条件下显著变化的目标分子; - **聚类/分类建模**:探索潜在模式关联关系; - **富集测试&路径映射**:揭示生物意义层面的影响机制。 每项任务都配有详细的参数配置向导帮助研究者设定最合适的条件合以满足特定需求。 ```python # Python 示例代码片段展示如何自动化部分重复性的前处理环节 (假设已安装pandas库) import pandas as pd def preprocess_data(file_path): df = pd.read_csv(file_path, sep='\t') # 调整sep参数匹配实际分隔符 # 填充NA值 df.fillna(df.mean(), inplace=True) # 数据缩放 from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaled_df = pd.DataFrame(scaler.fit_transform(df), columns=df.columns) return scaled_df ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值