文章目录
1. 引言
1.1 前文回顾与问题提出
在之前的文章中,我们介绍了马科维茨模型在中国市场资产配置中的应用。(详情请见【基金量化研究系列】大类资产配置研究(四)——基于马科维茨模型的资产配置研究)。但是,由于马科维茨模型中存在的诸多问题,资产配置的效果却不尽如人意。
我们之前的实证研究已经提到过:波动率与未来的收益率呈现出显著的负相关关系,因此我们可以以某类资产的波动率作为先行指标:当资产波动率不断上升时,资产收益的下行风险显著增加,在这种情况下我们应该对该类资产进行减仓。我们很自然地想到一种配置思路:如果让所有的风险资产对投资组合的总风险的贡献均有相同的比例(即风险平价),那这样一种策略会不会既稳健又有较高的收益率呢?
在这篇文章中,就让我们来验证一下这样的观点吧!
1.2 数据收集与标的资产选取
本文以开源的Choice数据库作为本文的数据来源。关于Choice数据库的使用方法及说明请参考:Choice数据量化接口产品手册。
对于标的资产的选择,我们仍以“易方达沪深300ETF(510310)”与“国泰上证5年国债ETF(511010)”作为股票市场与债券市场的基准可投标的,并以“华安黄金易ETF(518880)”和“七日深圳国债逆回购R-007(131801)”作为商品和无风险资产的基准可投资标的。这些标的均可以在券商账户中进行交易。
1.3 基本假设
本文仍延续前文的基本假设,规定:
(1)市场中不允许融资做多与融券做空;
(2)建仓调仓过程中不允许借款、参与国债回购;
(3)每日仅在收盘时间以收盘价格进行交易;
(4)未特别规定,忽略调、建仓手续费。
2. 风险平价策略简介
2.1 模型的建立
所谓 风险平价(Risk Parity) ,即将 投资组合的总风险平均分散入各资产,使得每一类资产贡献的风险相等。因此,首先要解决的问题,就是如何去衡量各类资产所贡献的风险大小。
首先,组合资产的波动率满足:
σ p = ( ω T Σ ω ) 1 2 \sigma_p = (\omega^T \Sigma \omega )^{ \frac{1}{2}} σp=(ωTΣω)21
其中:
· σp 表示组合资产的标准差;
· Σ 表示风险资产的协方差矩阵;
· ω 表示风险资产的权重列向量。
定义第 i 类资产的风险贡献率(Risk Contribution)RCi:
RC i = 1 σ p ω i ∂ σ p ∂ ω i , i = 1 , 2 , . . . , N \text{RC}_i = \frac{1}{\sigma_p} \omega_i \frac{\partial\sigma_p}{\partial\omega_i}, \ i = 1, 2, ..., N RCi=σp1ωi∂ωi∂σp, i=1,2,...,N
其中:
∂ σ p ∂ ω i = ∂ ( ω T Σ ω ) 1 2 ∂ ω i = ( ω T Σ ) i ω T Σ ω , i = 1 , 2 , . . . , N \frac{\partial\sigma_p}{\partial\omega_i} = \frac{\partial(\omega^T \Sigma \omega )^{ \frac{1}{2}}}{\partial\omega_i} = \frac{(\omega^T\Sigma)_i }{\sqrt{\omega^T \Sigma \omega}} , \ i = 1, 2, ..., N ∂ωi∂σp=∂ωi∂(ωTΣω)21=ωTΣω(ωTΣ)i, i=1,2,...,N
因此, RCi 可以变型为:
RC i = ω i ( ω T Σ ) i ω T Σ ω , i = 1 , 2 , . . . , N \text{RC}_i = \frac{\omega_i(\omega^T\Sigma)_i }{\omega^T \Sigma \omega}, \ i = 1, 2, ..., N RCi=ωTΣωωi(ωTΣ)i, i=1,2,...,N
上式的分子项表示由第 i 类资产贡献的方差,分母则表示组合资产的总方差。
若想让每一类风险资产对组合的风险贡献率相等,对于任意的 i,RCi 应满足:
RC i =