【基金量化研究系列】大类资产配置研究(六)——多资产风险平价策略

本文探讨了风险平价策略,旨在通过风险贡献率相等实现资产配置的均衡。通过Python实现了该策略,对比马科维茨模型显示风险平价策略在降低风险和提高夏普比率方面更具优势。然而,调仓周期对策略表现敏感,过短或过长的周期可能影响效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


1. 引言

1.1 前文回顾与问题提出

在之前的文章中,我们介绍了马科维茨模型在中国市场资产配置中的应用。(详情请见【基金量化研究系列】大类资产配置研究(四)——基于马科维茨模型的资产配置研究)。但是,由于马科维茨模型中存在的诸多问题,资产配置的效果却不尽如人意。

我们之前的实证研究已经提到过:波动率与未来的收益率呈现出显著的负相关关系,因此我们可以以某类资产的波动率作为先行指标:当资产波动率不断上升时,资产收益的下行风险显著增加,在这种情况下我们应该对该类资产进行减仓。我们很自然地想到一种配置思路:如果让所有的风险资产对投资组合的总风险的贡献均有相同的比例(即风险平价),那这样一种策略会不会既稳健又有较高的收益率呢?

在这篇文章中,就让我们来验证一下这样的观点吧!

1.2 数据收集与标的资产选取

本文以开源的Choice数据库作为本文的数据来源。关于Choice数据库的使用方法及说明请参考:Choice数据量化接口产品手册

对于标的资产的选择,我们仍以“易方达沪深300ETF(510310)”与“国泰上证5年国债ETF(511010)”作为股票市场与债券市场的基准可投标的,并以“华安黄金易ETF(518880)”和“七日深圳国债逆回购R-007(131801)”作为商品和无风险资产的基准可投资标的。这些标的均可以在券商账户中进行交易。

1.3 基本假设

本文仍延续前文的基本假设,规定:
(1)市场中不允许融资做多与融券做空;
(2)建仓调仓过程中不允许借款、参与国债回购;
(3)每日仅在收盘时间以收盘价格进行交易;
(4)未特别规定,忽略调、建仓手续费。


2. 风险平价策略简介

2.1 模型的建立

所谓 风险平价(Risk Parity) ,即将 投资组合的总风险平均分散入各资产,使得每一类资产贡献的风险相等。因此,首先要解决的问题,就是如何去衡量各类资产所贡献的风险大小。

首先,组合资产的波动率满足:

σ p = ( ω T Σ ω ) 1 2 \sigma_p = (\omega^T \Sigma \omega )^{ \frac{1}{2}} σp=(ωTΣω)21

其中:
· σp 表示组合资产的标准差;
· Σ 表示风险资产的协方差矩阵;
· ω 表示风险资产的权重列向量。

定义第 i 类资产的风险贡献率(Risk Contribution)RCi
RC i = 1 σ p ω i ∂ σ p ∂ ω i ,   i = 1 , 2 , . . . , N \text{RC}_i = \frac{1}{\sigma_p} \omega_i \frac{\partial\sigma_p}{\partial\omega_i}, \ i = 1, 2, ..., N RCi=σp1ωiωiσp, i=1,2,...,N
其中:
∂ σ p ∂ ω i = ∂ ( ω T Σ ω ) 1 2 ∂ ω i = ( ω T Σ ) i ω T Σ ω ,   i = 1 , 2 , . . . , N \frac{\partial\sigma_p}{\partial\omega_i} = \frac{\partial(\omega^T \Sigma \omega )^{ \frac{1}{2}}}{\partial\omega_i} = \frac{(\omega^T\Sigma)_i }{\sqrt{\omega^T \Sigma \omega}} , \ i = 1, 2, ..., N ωiσp=ωi(ωTΣω)21=ωTΣω (ωTΣ)i, i=1,2,...,N
因此, RCi 可以变型为:
RC i = ω i ( ω T Σ ) i ω T Σ ω ,   i = 1 , 2 , . . . , N \text{RC}_i = \frac{\omega_i(\omega^T\Sigma)_i }{\omega^T \Sigma \omega}, \ i = 1, 2, ..., N RCi=ωTΣωωi(ωTΣ)i, i=1,2,...,N
上式的分子项表示由第 i 类资产贡献的方差,分母则表示组合资产的总方差。

若想让每一类风险资产对组合的风险贡献率相等,对于任意的 i,RCi 应满足:
RC i =

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值