个人阅读笔记,如有错误欢迎指出
期刊:IWQOS 2021 FedEraser: Enabling Efficient Client-Level Data Removal from Federated Learning Models | IEEE Conference Publication | IEEE Xplore
问题:
“被遗忘权”要求用户可以在任何时刻停止使用其个人数据
在ML的背景下,现有的遗忘技术对FL不再有效
创新:
使全局模型能够“忘记”恶意客户端的数据
开发了新的存储和校准技术来解决参数更新中信息的前馈问题
使用未学习模型和再训练模型之间的层参数偏差来衡量FedEraser在全局模型上的有效性
方法:
总览:中央服务器以定期轮次的间隔保留客户端的更新,以及相应轮次的索引,以便进一步校准保留的更新来重建未学习的全局模型,而不是从头开始重新训练。分为四步:(1) 校准训练,(2)更新校准,(3)校准更新聚合,以及(4)未学习的模型更新
1)校准训练
初始的矫正全局模型:因为标准FL的初始模型未被目标客户端训练,FedEraser可以直接更新全局模型,而无需在第一个重建时期校准剩余客户端的参数
让校准客户对上一轮校准中获得的校准全局模型进行
轮的本地训练
在矫正训练后,每个矫正客户端计算当前的更新,并发送给服务器进行矫正
2)更新矫正
服务器获得每个客户端关于校准的全局模型的当前更新
使用当前更新计算矫正值
具体公式如下:利用前一轮矫正全局模型上训练得到的更新,计算得到保留的客户端更新需要的矫正的值。:表示需要矫正的全局模型参数的值。
:需要矫正的全局模型的方向
3)校准更新聚合
计算校准更新的加权平均值,是由数据量占比的客户端权重
4)未学习的模型更新
通过聚合后的矫正更新重新更新全局模型
服务器和校准客户端协作地重复上述过程,直到原始更新UUUU全部被校准,然后更新到全局模型,最终得到的全局模型消除了客户端
数据的影响。
整体算法流程
实验:
总结:
优点:
能够消除客户端数据对全局模型的影响。
这种方法比重新从头开始训练模型的速度提高了4倍。
服务器端只需要增加额外的保存功能,而不用对现有的联邦学习体系结构或联邦客户端上的培训过程进行大的修改,因此这种防御机制很容易作为一个组件部署到现有的联邦学习系统中。
由于原理是删除指定客户端的贡献所以几乎可以适用于防御所有的攻击。
局限性:
校准过程依赖于客户端的参与,并且要使用它们的历史数据集,而一个实际的问题是,客户端的边缘设备可能只有有限的存储空间,他们可能会在培训过程结束后随时删除数据。
需要客户端和服务器之间进行额外的通信, 但是通信会耗费大量时间和精力。
一般的联邦学习在训练过程中需要随机选择参加每轮培训的客户端,此外,在每个客户端的本地训练过程中也存在很多随机性,所以训练过程是随机的。因此,用在原始数据集上重新训练,用新的更新校准历史更新可能在实际中并不可行。
需要已知恶意客户端是哪一个。
牺牲了一定的隐私,与安全聚合不兼容。在安全聚合协议中,服务器无法知道用户局部更新的明文,服务器无法利用客户端的更新,这种方法无法使用。