yolov8 源码解读 (part1: backbone, head)

本文深入解析Yolov8的源码,重点关注模型的backbone和head部分。通过详细解读网络结构图,阐述了包括C2f层、Bottleneck结构以及SPPF模块的功能和实现细节。代码中使用了SiLU激活函数,并通过不同的模块组合,逐步调整特征图的尺寸和通道数,形成复杂的特征提取网络。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

yolov8 除了目标检测之外,还有实例分割功能,
这里解读检测和分割代码。

先上一张结构图,这个图里没有分割模块,后面会在代码里说明分割模块。
本篇解读红色框内的部分。
可以看到每个模块右边都有一个数字:0,1,…
这个数字是模块的顺序编号,按0,1,…,21的顺序进行,而且Concat模块会指定cat哪几个序号的层,
如果搞不清Concat中指定的序号到底是哪一层,就根据这个编号找。

C2f 层具体是什么结构参考这里
在这里插入图片描述

现在开始读入图像,图像size按图中的(640, 640, 3).
预处理没啥特别的,仅是 / 255.

进入yolov8/ultralytics/nn/autobackend.py.

class 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝羽飞鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值