COLMAP多视角视图数据可视化

本文介绍了如何利用COLMAP工具进行多视角三维重建,包括相机位姿估计和初步的稀疏重建。通过特征匹配计算相机内外参数,结合多视角照片实现数据可视化。文中提供了操作步骤,从选择工作区、指定图像路径到执行自动重建和新建项目,最终得到三维位置的观测点分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这篇博文主要介绍多视角三维重建的实用工具COLMAP。为了让读者更快确定此文是否为自己想找的内容,我先用简单几句话来描述此文做的事情: 假设我们针对一个物体(人)采集了多个(假设60个)视角的照片,希望用COLMAP实现:(1)通过不同视角之间的特征匹配算出每个视角的相机位资(内外参);(2) 对物体进行初步的稀疏重建,完成多视角数据的可视化(详见图3)。
参考链接:(官方)
Github: https://github.com/colmap/colmap
Tutorial: https://colmap.github.io/


随着NeRF在新视角合成的爆火,多视角三维重建迎来了两年多的蓬勃发展。
NeRF0

图1 NeRF渲染新视角
如图1所示,我们轻而易举可以采集到某一物体的多视角图像。由简单的多视几何原理可知, 单视角视图与三维物体之间可以通过相机内外参数的计算进行映射

废话不多说,我们先得到多视角的图像:lego multi-view

图2 多视角乐高积木
如果光看图片,哪张图片属于哪个视角其实是不直观的。而且没有相机参数将它们之间联系起来。这个时候就可以用到COLMAP了。COLMAP工具效果如图3:

COLMAP1

图3 COLMAP多视角视图相机位姿计算与可视化
根据图3,我们可以看出多个视图的观测点分别处于哪个三维位置。这样比较容易看采样的疏密程度等等,便于debug。同时,我们可以算出每个视点的相机位姿,可以做进一步重建之用(如NeRF)。

现在我把如何从一组图片中得到图3结果的步骤描述一下:
(1)打开COLMAP界面,点击Reconstruction->Automatic reconstruction,得到下列输入框:


COLMAP2
图4 COLMAP操作图

(2) 在图4的对话框中,选定一个workspace路径(可自定义),再明确图像路径(存放多视角图像的路径)。然后把Dense model的对勾去掉,点击Run即可。完成这一步操作后,COLMAP会在workspace路径下生成一个 database.db文件。如果这步完成没得到图3结果,可继续做进行第(3)步;
(3)左上角点击 File->New Project,选定database为第(2)步生成出的 database.db,选定images为图像路径。点击save即可。
在这里插入图片描述
然后点击左上角运行。即可得到图3结果。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

木盏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值