【论文阅读】Generalized Focal Loss

本文探讨了Generalized Focal Loss在目标检测中的应用,分析了现有one-stage anchor-free检测器存在的问题,包括训练与测试阶段的不一致以及边界框表示的局限性。为解决这些问题,文章提出将分类与质量估计进行联合表示,并使用离散化方法回归任意分布以建模复杂场景下边界框的不确定性。GFL(Generalized Focal Loss)的优化方法包括Quality Focal Loss和Distance Focal Loss的结合。
摘要由CSDN通过智能技术生成

Generalized Focal Loss

motivation:
目前比较强力的one-stage anchor-free的检测器(以FCOS,ATSS为代表)基本会包含3个表示:

  1. 分类表示:cls

  2. 检测框表示:box

  3. 检测框的质量估计(在FCOS/ATSS中,目前采用centerness,当然也有一些其他类似的工作会采用IoU,这些score基本都在0~1之间):iou or centerness

问题一:classification score 和 IoU/centerness score 训练测试不一致。
在这里插入图片描述

两个方面:
1) 用法不一致。训练的时候,分类和质量估计各自训记几个儿的,但测试的时候却又是乘在一起作为NMS score排序的依据,这个操作显然没有end-to-end,必然存在一定的gap。

2) 对象不一致。借助Focal Loss的力量,分类分支能够使得少量的正样本和大量的负样本一起成功训练,但是质量估计通常就只针对正样本训练。那么,对于one-stage的检测器而言,在做NMS score排序的时候,所有的样本都会将分类score和质量预测score相乘用于排序,那么必然会存在一部分分数较低的“负样本”的质量预测是没有在训练过程中有监督信号的,有就是说对于大量可能的负样本,他们的质量预测是一个未定义行为。这就很有可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值