Mamba综述

  • 第一篇Mamba综述
    作者单位:安徽大学、哈尔滨工业大学、北京大学
    论文:https://arxiv.org/abs/2404.09516
    https://github.com/Event-AHU/Mamba_State_Space_Model_Paper_List
    Ref
### Mamba 的用途 #### 自然语言处理中的应用 Mamba 是一种专为自然语言处理(NLP)设计的语言模型架构。该模型通过特定的前向和后向传播机制来增强序列建模能力[^2]。 对于给定的正向序列 $\overline{\mathbf{s}_f}$ 和反向序列 $\overline{\mathbf{s}_b}$, Mamba 能够分别计算得到改进后的表示形式: $$ \begin{aligned} \widetilde{\mathbf{s}_{f}} &= \operatorname{Mamba}_{f}\left(\overline{\mathbf{s}_{f}}\right), \\ \widetilde{\mathbf{s}_{b}} &= \operatorname{Mamba}_{b}\left(\overline{\mathbf{s}_{b}}\right). \end{aligned} $$ 这种双向处理方式使得 Mamba 可以更有效地捕捉上下文信息,从而提高在诸如机器翻译、情感分析等任务上的表现。 #### 计算机视觉领域的作用 除了 NLP 外,在计算机视觉方面也有研究探讨了基于 Mamba 架构的方法。例如,《关于视觉 Mamba综述》一文中提到,Mamba 不仅限于文本数据,还可以应用于图像识别等领域[^3]。 #### 特征提取器的角色 作为 ODMamba 主干网的一部分,Mamba 承担着从原始输入(如图片)中抽取有用特征的任务。这些被提炼出来的特征将为后续阶段提供必要的支持,比如目标检测或分类等工作流组件[^4]。 ```python import torch.nn as nn class MambaBackbone(nn.Module): def __init__(self): super(MambaBackbone, self).__init__() # 定义主干网络层 def forward(self, x): features = self.backbone_layers(x) return features ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值