本文来源公众号“江大白”,仅用于学术分享,侵权删,干货满满。
原文链接:力压Transformer算法?首篇Mamba综述来了!(附论文及源码)
以下文章来源于微信公众号:自动驾驶之心
作者:Rui Xu
链接:https://mp.weixin.qq.com/s/gC2-hfcMM_BCnjWMuJCjyQ
0 导读
最近 Mamba 架构在学术圈引起了广泛关注。不少文章编写Mamba 将会把 Transformer 拉下神坛,将取代 Transformer。本文将详细解读下 Mamba 架构及其综述。
1 写在前面&笔者的个人理解
Mamba是一种新的选择性结构状态空间模型,在长序列建模任务中表现出色。Mamba通过全局感受野和动态加权,缓解了卷积神经网络的建模约束,并提供了类似于Transformers的高级建模能力。至关重要的是,它实现了这一点,而不会产生通常与Transformer相关的二次计算复杂性。由于其相对于前两种主流基础模型的优势,曼巴展示了其作为视觉基础模型的巨大潜力。研究人员正在积极地将曼巴应用于各种计算机视觉任务,导致了许多新兴的工作。
为了跟上计算机视觉的快速发展,本文旨在对视觉曼巴方法进行全面综述。本文首先描述了原始曼巴模型的公式。随后,我们对视觉曼巴的综述深入研究了几个具有代表性的骨干网络,以阐明视觉曼巴中的核心见解。然后,我们使用不同的模式对相关作品进行分类,包括图像、视频、点云、多模态等。具体来说,对于图像应用程序,我们将它们进一步组织成不同的任务,以促进更结构化的讨论。最后,我们讨论了视觉曼巴的挑战和未来的研究方向,为这个快速发展的领域的未来研究提供了见解。
代码链接:https://github.com/Ruixxxx/Awesome-Vision-Mamba-Models
论文链接:https://export.arxiv.org/pdf/2404.18861
总结来说,本文的主要贡献如下:
-
曼巴的形成:本文提供了曼巴和状态空间模型的操作原理的介绍性概述。
-
主干网络:我们提供了几个具有代表性的视觉曼巴骨干网络的详细检查。本分析旨在阐明支撑Visual Mamba框架的核心原则和创新。
-
应用:我们根据不同的模态对曼巴的其他应用进行分类,如图像、视频、点云、多模态数据等。深入探讨了每个类别,以突出曼巴框架如何适应每种模态并使其受益。对于涉及图像的应用,我们进一步将其划分为各种任务,包括但不限于分类、检测和分割。
-
挑战:我们通过分析视觉数据的独特特征、算法的潜在机制以及现实世界应用程序的实际问题,来研究与CV相关的挑战。
-
未来方向:我们探索视觉曼巴的未来研究方向,重点关注数据利用和算法开发方面的潜在进展。
2 Mamba公式
Mamba是最近的一个序列模型,旨在通过简单地将其参数作为输入的函数来提高SSM基于上下文的推理能力。这里的SSM特别指的是结构化状态空间序列模型(S4)中使用的序列变换,它可以被纳入深度神经网络。Mamba简化了常用的SSM块,形成了简化的SSM架构。在下文中,我们将详细阐述曼巴的核心概念。