复杂度分析法则:
[单段代码看频率]:看代码片段中「循环代码」的时间复杂度。
[多段代码看最大]:如果多个 for 循环,看「嵌套循环最多」的那段代码的时间复杂度。
[嵌套代码求乘积]:循环、递归代码,将内外嵌套代码求乘积去时间复杂度。
[多个规模求加法]:法有两个参数控制两个循环的次数,那么这时就取二者复杂度相加。
----------------------------------❤------------------------------------
时间复杂度
1、什么是复杂度?
所有代码的执行时间 T(n)与每行代码的执行次数n成正比【T(n) = O(f(n)) 】。
2、分析的三个方法
■ 最多法则
忽略掉公式中的常量、低阶、系数,取最大循环次数就可以了,也就是循环次数最多的那行代码。
Example:
// 求n个数字之和
int xiaolu(int n) {
int sum = 0;
for (int i = 1; i <= n; ++i) {
sum = sum + i;
}
return sum;
}
分析:
第二行是一行代码,也就是常量级别,与 n 没有关系,可以忽略,四、五行代码是我们重点分析对象,与 n 有关,时间复杂度就是反映执行时间和 n 数据规模的关系。求 n 个数据之和需要执行 n 次。所以时间复杂度为 O(n)。
■ 加法法则
总复杂度等于循环次数最多的那段复杂度。
Example:
int xiaolu(int n) {
int sum = 0;
//循环一
for (int i = 1; i <= 100; j++) {
sum = sum + i;
}
//循环二
for (int j = 1; j <= n; j++) {
sum = sum + i;
}
}
分析:
上边有两个循环,一个循环 100 次,另一个循环 n 次,我们选择循环次数最多的那一个且和「数据规模 n 」相关的循环。由上可知,我们很容易选出循环二,即和数据规模 n 有关,循环次数最多,循环次数最多的那段代码时间复杂度就代表总体的时间复杂度,为 O(n) ;
■ 乘法法则
当我们遇到嵌套的 for 循环的时候,怎么计算时间复杂度呢?那就是内外循环的乘积。
Example:
for (int j = 1; j <= n; j++) {
for(int i = 1; i <= n; i++)
sum = sum + i;
}
分析:
外循环一次,内就循环 n 次,那么外循环 n 次,内就循环 n*n 次。所以时间复杂为 O(n²)。
空间复杂度
1、什么是空间复杂度?
表示算法的「存储空间」与「数据规模」之间的增长关系.
Example:
int xiaolu(int n) {
int sum = 0;
//循环一
for (int i = 1; i <= 100; j++) {
sum = sum + i;
}
//循环二
for (int j = 1; j <= n; j++) {
sum = sum + i;
}
}
分析:
在所有代码中,我们很容易寻找到存储空间相关的代码,就是第二行,申请了一个 n 大小的存储空间,所以空间复杂度为 O(n)。
2、最常见的空间复杂度
O(1)、O(n)、O(n²)。
■ O(1)
常量级的时间复杂度表示方法,无论是一行代码,还是多行,只要是常量级的就用 O(1) 表示。
Example:
int i = 1;
int j = 2;
int sum = i + j;
分析:
因为这三行代码,也就是常量级别的代码不随 n 数据规模的改变而改变。(循环、递归除外)
■ O(logn) | O(nlogn)
「对数阶时间复杂度」,最难分析的一种时间复杂度。
Example:
i=1;
while (i <= n) {
i = i * 3;
}
分析:
要求这段代码的时间复杂度就求这段代码执行了多少次,看下图具体分析。
补充:
不管是以 2 为底、以 3 为底,还是以 10 为底,可以把所有对数阶的时间复杂度都记为 O(logn),因为对数之间可以转换的,参照高中课本
■ O(m+n) | O(mn)*
参照上边讲到的加法和乘法法则。
----------------------------------❤------------------------------------
1、最好、最坏时间复杂度
所谓的最好、最坏时间复杂度分别对应代码最好的情况和最坏的情况下的执行。
Example
//在一个 array 数组中查找一个数据 a 是否存在
for (int i = 1; i < n; i++) {
if (array[i] == a) {
return i;
}
}
分析:
1、最好情况就是数组的第一个就是我们要查找的数据,上边代码之执行一遍就可以,这种情况下的时间复杂度为最好时间复杂度,为 O(1)。
2、最坏的情况就是数组的最后一个才是我们要查找的数据,需要循环遍历 n 遍数组,也就对应最坏的时间复杂度为 O(n) 。
2、平均时间复杂度
平均时间复杂度需要借助概率论的知识去分析,也就是我们概率论中所说的加权平均值,也叫做期望值。
分析:
比如上方的例子,假设我们查找的数据在数组中的概率为 1/2;出现在数组中的概率为 n/1,根据下边的公式就可以算出出现的概率为 1/2n 。
然后我们再把每种情况考虑进去,就可以计算出平均时间复杂度。
3、均摊时间复杂度
■什么是均摊时间复杂度?
比如我们每 n 次插入数据的时间复杂度为 O(1),就会有一次插入数据的时间复杂度为 O(n),我们将这一次的时间复杂度平均到 n 次插入数据上,时间复杂度还是 O(1)。
■ 适用场景
一般应用于某一数据结构,连续操作时间复杂度比较低,但是个别情况时间复杂度特别高,我们将特别高的这一次进行均摊到较低的操作上。
■ 几种复杂度性能对比
各个时间复杂度的性能
===========我是华丽的分割线===========
更多知识:
点击关注专题:嵌入式Linux&ARM
或浏览器打开:https://www.jianshu.com/c/42d33cadb1c1
或扫描二维码: