1. 源由
之前过年的时候,花了两周的时间过了一遍 《ubuntu22.04@laptop OpenCV Get Started》。
后续更多的时间需要再GPU算法上下功夫,目前该类技术已经在目标识别、跟踪等方面已经具备突破性进展,而图像分析可以从更高的维度理解为多因素数据分析。
对于《一种部件生命期监测方法》在高度专业业务领域的预测方面具有重要意义。
好吧,就借这个机会,对Tensorflow & Keras做个入门的学习和研读,和大家一起共勉!
2. 步骤
凡事只能一步一个脚印,稳扎稳打,就像山寨货,虽然能快速出来,但是出了问题就只能儍瞪眼的份。
因此,我们的习惯就是一步一个脚印,马上踏上Tensorflow & Keras的学习之旅:
- 【1】Jammy@Jetson Orin - Tensorflow & Keras Get Started: 000 setup for tutorial
- 【2】Jammy@Jetson Orin - Tensorflow & Keras Get Started: Concept
- 【3】Jammy@Jetson Orin - Tensorflow & Keras Get Started: 001 Linear Regression
- 【4】Jammy@Jetson Orin - Tensorflow & Keras Get Started: Understanding Feedforward Neural Networks
- 【5】Jammy@Jetson Orin - Tensorflow & Keras Get Started: 002 Implementing an MLP in TensorFlow & Keras
- 【6】Jammy@Jetson Orin - Tensorflow & Keras Get Started: Convolutional Neural Network - A Complete Guide
- 【7】Jammy@Jetson Orin - Tensorflow & Keras Get Started: 003 Implementing a CNN in TensorFlow & Keras
- 【8】Jammy@Jetson Orin - Tensorflow & Keras Get Started: 004 Keras Pre-Trained ImageNet Models
- 【9】Jammy@Jetson Orin Nano - Tensorflow GPU版本安装
- 【10】Jammy@Jetson Orin - Tensorflow & Keras Get Started: Transfer Learning & Fine Tuning
- 【11】Colab - Tensorflow & Keras Get Started: 005 Keras Fine Tune Pre-Trained Models GTSRB
- 【12】Colab - Tensorflow & Keras Get Started: 006 Introduction to Semantic Segmentation
- 【13】Colab - Introduction to Object Detection using TensorFlow Hub
3. 预期&展望
预期:1~2周完成入门学习,了解基本概念和API操作。
展望:持续PyTorch方面的学习,完成目标追踪功能。
目的:
- 《ArduPilot开源代码之CompanionComputer上天计划》
- 《Ardupilot开源代码之Rover上路计划》
- 《Ardupilot & OpenIPC & 基于WFB-NG构架分析和数据链路思考》
4. 总结
从2024-04-29到2024-05-4基本上对Tensorflow & Keras的基础功能做了一个快速浏览和简单学习。基本上也遵守了前面的承诺:“1~2周完成入门学习,了解基本的API操作。”
对于后续进一步研究问题,解决问题,提供了一些基础,更多DEMO资料可以去Keras Code examples官方网站。
希望大家能多提宝贵意见和建议,一起努力学习!