The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits

近期研究的BitNetb1.58展示了1-bit大语言模型的新进展,其在保持与全精度模型相近的性能同时,显著降低延迟、内存需求和能耗。通过量化、特定组件和从头训练,BitNetb1.58开启了一种新的计算范式,为低功耗AI硬件设计提供了可能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The Era of 1-bit LLMs: All Large Language Models Are in 1.58 Bits

相关链接:arxivgithub
关键字:1-bit LLMsBitNet模型压缩能耗效率模型性能

image.png

摘要

近期的研究,例如BitNet,正在为1-bit大型语言模型(LLMs)的新时代铺平道路。在本工作中,我们介绍了一个1-bit LLM的变体——BitNet b1.58,其中LLM的每一个参数(或称为权重)均为三值{-1, 0, 1}。BitNet b1.58在复杂度和末端任务性能上与同等模型大小和训练令牌的全精度(即FP16或BF16)Transformer LLM匹敌,同时在延迟、内存、吞吐量和能源消耗等方面成本更低。更深层次地,1.58-bit LLM定义了一个新的规模法则和训练新一代LLMs的配方,这些模型既高性能又具成本效益。此外,它还启用了一种新的计算范式,并为设计优化1-bit LLM的专用硬件打开了大门。

核心方法

BitNet b1.58的关键方法包括:

  • 量化函数:采用绝对值均值(absmean)量化函数对权重进行约束至{-1, 0, +1},激活采用与BitNet相似的量化方式进行处理,将激活缩放到[-Q,Q]以拜托零点量化。
  • LLaMA-alike组件:模型结构采用LLaMA相似的组件,如RMSNorm、SwiGLU和rotary embedding,使得BitNet b1.58容易集成到流行的开源软件。
  • 从头开始训练:使用1.58-bit权重和8-bit激活,从头开始训练。

实验说明

效果对比

我们使用markdown表格形式来表示实验结果,以便于观察比较:

ModelsSizeMemory (GB)↓Latency (ms)↓PPL↓
LLaMA LLM700M2.08 (1.00x)1.18 (1.00x)12.33
BitNet b1.58700M0.80 (2.60x)0.96 (1.23x)12.87
LLaMA LLM1.3B3.34 (1.00x)1.62 (1.00x)11.25
LLaMA LLM1.3B1.14 (2.93x)0.97 (1.00x)11.29
LLaMA LLM3B7.89(1.00x)5.07(1.00x)10.04
BitNet b1.583B2.22(3.55x)1.87(2.71x)9.91
BitNet b1.583.9B2.38(3.32x)2.11(2.40x)9.62

表格1:BitNet b1.58与LLaMA LLM在不同模型大小下的复杂度及效果对比。

ModelsSizeARC-eARC-cHellaSwagWinograndePIQAOpenbookQABoolQAvg.
LLaMA LLM700M54.723.037.060.020.268.954.845.5
BitNet b1.58700M51.821.435.158.220.068.155.244.3
LLaMA LLM1.3b56.923.538.559.121.670.053.946.2
BitNet b1.581.3B54.924.237.756.719.668.855.845.4
LLaMA LLM3B62.125.643.361.824.672.158.249.7
BitNet b1.583B61.428.342.961.526.671.559.350.2
BitNet b1.583.9B64.228.744.263.524.273.260.551.2

表格2:BitNet b1.58与LLaMA LLM在不同终端任务中的零样本准确率对比。

这些实验中,模型在RedPajama数据集上预训练了1000亿个令牌,并在多种语言任务中评估了零拍照性能。此外,比较了BitNet b1.58和LLaMA LLM在不同模型大小下的GPU运行内存和延迟,并测量了吞吐量、能源消耗。

效率对比

image.png
image.png
图2:解码延迟与内存消耗因模型大小而异

ModelsSizeMax Batch SizeThroughput (tokens/s)
LLaMA LLM70B16 (1.0x)333 (1.0x)
BitNet b1.5870B176 (11.0x)2977 (8.9x)
表格3:吞吐率与batch_size的比较

结论

BitNet b1.58开辟了一条新的关于模型性能与推理成本的规模法则。我们可以根据结果确定,在延迟、内存使用和能耗方面,13B BitNet b1.58比3B FP16 LLM更高效,30B BitNet b1.58比7B FP16 LLM更高效,70B BitNet b1.58比13B FP16 LLM更高效。2T令牌的训练显示,BitNet b1.58在所有终端任务上优于3B模型,显示出1.58-bit LLM也具有强大的泛化能力。

### 大型语言模型作为生成式多语言语音和机器翻译系统的概述 大型语言模型LLMs)由于其强大的参数规模和预训练机制,能够处理多种自然语言任务。这些模型不仅限于单一语言环境,还展示了出色的跨语言迁移能力[^1]。 #### 跨语言表示学习中的挑战与解决方案 尽管ML LMs表现出显著的零样本跨语言迁移性能,但在实际应用中仍面临一些障碍。研究指出,在多语言嵌入空间里存在着强烈的语言身份特征,这会干扰语义信息的有效传递。为此,Xie等人提出了通过识别并消除低秩子空间来改善这一状况的方法。这种方法可以有效减少语法和其他非语义因素的影响,从而提高跨语言任务的表现[^2]。 #### 应用于生成式多语言语音合成 当涉及到生成式的多语言语音合成功能时,LLM可以通过理解不同语言之间的细微差别以及它们各自的发音规则来进行高质量的声音再现。借助先进的声码器技术,如WaveNet或Tacotron系列架构,结合精心设计的文字转音素映射算法,使得即使是对不常见字符也能实现逼真的发声效果。此外,利用上述提到的技术去除不必要的语言特性可以帮助创建更加通用且适应性强的TTS(Text-to-Speech)系统。 ```python import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-xlsr-53") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-xlsr-53") def transcribe_speech(audio_input): inputs = processor(audio_input, sampling_rate=16000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(**inputs).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids)[0] return transcription ``` #### 实现高效的机器翻译服务 对于构建高效可靠的MT(Machine Translation)平台而言,LLM同样扮演着重要角色。通过对大量平行文本数据集的学习,加上适当的微调过程,可以使模型更好地捕捉源目标语言间的转换规律。特别是采用去除了特定语言属性后的向量表征方式后,进一步增强了对未知领域话题的理解力和服务质量稳定性。 ```python from transformers import MarianTokenizer, MarianMTModel tokenizer = MarianTokenizer.from_pretrained('Helsinki-NLP/opus-mt-en-zh') model = MarianMTModel.from_pretrained('Helsinki-NLP/opus-mt-en-zh') def translate_text(input_text): batch = tokenizer([input_text], return_tensors='pt', truncation=True, max_length=512) generated_ids = model.generate(**batch) translated_texts = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) return translated_texts[0] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

liferecords

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值