PCA (principal component analysis)

1,主成分分析的目的

1.1、降维,从高维度到低维度;
1.2、找出最能解释这组数据的因子,第一主成分在方差最大的方向上,前几个主成分一般能解释这组数据方差的70%-90%;
1.3、主成分分析对有线性相关的各个组分有很好的应用效果,如果数据有高维度的相关性,应用效果会大打折扣。

2,从一个简单的例子开始

主要有下面一些步骤:
2.1 选择两组数据,大多数地方默认向量是列向量,但python的numpy.array的1d array默认是行向量,在使用过程中keep care。
2.2 对每组数据减去平均值(去中心化)。
2.3 计算协方差矩阵。
2.4 对协方差矩阵求特征值和特征向量。
2.5 选择一个或者多个特征向量组成特征矩阵。
2.6 用该特征矩阵对原始数据进行变化(如果选择了两个特征向量,变化后的数据就投影到这两个维度上了,这就是我们经常看到的组成分图)。
2.7 用变化后的数据和特征矩阵,可以变化回去原来的数据。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3,对PCA过程中的参数的解释

3.1 我们用软件画出PCA的图后,有时候会看到指向不同方向的箭头,这些箭头的方向就代表不同特征向量的方向,长度就代表不同方向的特征向量的重要性,即解释方差比例的描述。

3.2 关于特征值,将某个特征向量对应的特征值除以所有的特征值之和,得到的比例就是这个维度的特征向量解释方差的比例。

4,PCA在面部识别和图片压缩中的逻辑

4.1 面部识别
一张图片可以看成是NxN像素点的矩阵,提取出来它的N个特征向量,将图片变化到N个特征向量的空间中去,假设来了一个新的图片,将该图片也变化到这N个特征向量的空间中去,在该空间中比较图片的差异。
4.2 图片压缩
一张图片可以看成是NxN像素点的矩阵。提取出来它的N个特征向量,将图片变化到N个特征向量的空间中去;再选择k (k<N)个主要的特征,再将图片变化回去,就实现了压缩。

5,PCA的数学原理

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值