GBDT-为什么 GBDT 优于随机森林和决策树

GBDT、随机森林和决策树在偏差上的表现相近,但GBDT通过拟合伪残差逐步减小偏差,且由于其树间相关系数小,配合限制最大深度降低方差。随机森林依赖样本和特征的随机抽样降低方差,但仍高于GBDT。在方差控制上,GBDT更具优势。
摘要由CSDN通过智能技术生成

首先要理解的是决策树、随机森林和 GBDT 的偏差都不大。决策树和 bagging 是因为决策树模型本身的学习能力足够,所以偏差不大;GBDT 是通过不断拟合伪残差来一步步的减小偏差。因此对于偏差,三者差距不大

但是对于方差,相比于决策树,随机森林通过弱评估器的独立性降低方差,这个独立性一般是通过对样本有放回的随机抽样或者对特征的随机抽样达到的,但即使这么做,不同的树之间的相关系数依旧会较大(这是相对于 GBDT 的),所以只是降低了一部分的方差;对于 GBDT,也需要降低方差,由于 GBDT 通过不断拟合 ( x , f t ( x ) ) (x, f_{t}(x)) (x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值