slam复习准备大纲

这篇博客详细梳理了SLAM(Simultaneous Localization And Mapping)的关键内容,包括视觉前端的视差几何模型和SLAM问题建模,后端优化的卡尔曼滤波与扩展卡尔曼滤波推导,以及VINS(Visual-Inertial Navigation System)的连续和离散形式。还深入探讨了IMU约束残差和视觉残差的计算方法。
摘要由CSDN通过智能技术生成

视觉前端

SLAM复习总结:视觉里程计前端总结(一)

  • 视差几何模型推导(P91);
    在这里插入图片描述
    z − f z = b − u L + u R b z = f b d , d = u L − u R \frac{z-f}{z}=\frac{b-u_{L}+u_{R}}{b} \\ z=\frac{f b}{d}, \quad d=u_{L}-u_{R} zzf=bbuL+uRz=dfb,d=uLuR
  • slam问题建模公式(P106);
    { x k = f ( x k − 1 , u k ) + w k z k = h ( x k ) + v k k = 1 , … , N \left\{\begin{array}{ll}{\boldsymbol{x}_{k}=f\left(\boldsymbol{x}_{k-1}, \boldsymbol{u}_{k}\right)+\boldsymbol{w}_{k}} \\ {\boldsymbol{z}_{k}=h\left(\boldsymbol{x}_{k}\right)+\boldsymbol{v}_{k}}\end{array} \quad k=1, \ldots, N\right. { xk=f(xk1,uk)+wkzk=h(xk)+vkk=1,,N
  • 第四讲公式:
    exp ⁡ ( Δ ϕ ∧ ) exp ⁡ ( ϕ ∧ ) = exp ⁡ ( ( ϕ + J l − 1 ( ϕ ) Δ ϕ ) ∧ ) exp ⁡ ( ( ϕ + Δ ϕ ) ∧ ) = exp ⁡ ( ( J l Δ ϕ ) ∧ ) exp ⁡ ( ϕ ∧ ) = exp ⁡ ( ϕ ∧ ) exp ⁡ ( ( J r Δ ϕ ) ∧ ) \exp \left(\Delta \boldsymbol{\phi}^{\wedge}\right) \exp \left(\boldsymbol{\phi}^{\wedge}\right)=\exp \left(\left(\boldsymbol{\phi}+\boldsymbol{J}_{l}^{-1}(\boldsymbol{\phi}) \Delta \boldsymbol{\phi}\right)^{\wedge}\right)\\ \exp \left((\boldsymbol{\phi}+\Delta \boldsymbol{\phi})^{\wedge}\right)=\exp \left(\left(\boldsymbol{J}_{l} \Delta \boldsymbol{\phi}\right)^{\wedge}\right) \exp \left(\boldsymbol{\phi}^{\wedge}\right)=\exp \left(\boldsymbol{\phi}^{\wedge}\right) \exp \left(\left(\boldsymbol{J}_{r} \Delta \boldsymbol{\phi}\right)^{\wedge}\right) exp(Δϕ)exp(ϕ)=exp((ϕ+Jl1(ϕ)Δϕ))exp((ϕ+Δϕ))=exp((JlΔϕ))exp(ϕ)=exp(ϕ)exp((JrΔϕ))
    李代数求导
    ∂ ( R p ) ∂ φ = lim ⁡ φ → 0 exp ⁡ ( φ ∧ ) exp ⁡ ( ϕ ∧ ) p − exp ⁡ ( ϕ ∧ ) p φ ≈ lim ⁡ φ → 0 ( 1 + φ ∧ ) exp ⁡ ( ϕ ∧ ) p − exp ⁡ ( ϕ ∧ ) p φ = lim ⁡ φ → 0 φ ∧ R p φ = lim ⁡ φ → 0 − ( R p ) ∧ φ φ = − ( R p ) ∧ \begin{aligned} \frac{\partial(\boldsymbol{R} \boldsymbol{p})}{\partial \boldsymbol{\varphi}} &=\lim _{\varphi \rightarrow 0} \frac{\exp \left(\boldsymbol{\varphi}^{\wedge}\right) \exp \left(\boldsymbol{\phi}^{\wedge}\right) \boldsymbol{p}-\exp \left(\boldsymbol{\phi}^{\wedge}\right) \boldsymbol{p}}{\boldsymbol{\varphi}} \\ & \approx \lim _{\varphi \rightarrow 0} \frac{\left(1+\boldsymbol{\varphi}^{\wedge}\right) \exp \left(\boldsymbol{\phi}^{\wedge}\right) \boldsymbol{p}-\exp \left(\boldsymbol{\phi}^{\wedge}\right) \boldsymbol{p}}{\boldsymbol{\varphi}} \\ &=\lim _{\varphi \rightarrow 0} \frac{\boldsymbol{\varphi}^{\wedge} \boldsymbol{R} \boldsymbol{p}}{\boldsymbol{\varphi}}=\lim _{\varphi \rightarrow 0} \frac{-(\boldsymbol{R} \boldsymbol{p})^{\wedge} \boldsymbol{\varphi}}{\boldsymbol{\varphi}}=-(\boldsymbol{R} \boldsymbol{p})^{\wedge} \end{aligned} φ(Rp)=φ0limφexp(φ)exp(ϕ)pexp(ϕ)pφ0limφ(1+φ)exp(ϕ)pexp(ϕ)p=φ0limφφRp=φ0limφ(Rp)φ=(Rp)
  • SIFT算法详解
  • LOG高斯-拉普拉斯算子
  • 尺度不变特征变换(SIFT)特征提取分析
  • SURF特征提取分析
  • SIFT算法
  • Programming Computer Vision with Python (学习笔记十一)
  • 学习笔记 2.1 — Harris角点检测与特征匹配【含实例】
  • 光流
    I ( x + d x , y + d y , t + d t ) ≈ I ( x , y , t ) + ∂ I ∂ x d x + ∂ I ∂ y d y + ∂ I ∂ t d t ∂ I ∂ x d x + ∂ I ∂ y d y + ∂ I ∂ t d t = 0 ∂ I ∂ x d x d t + ∂ I ∂ y d y d t = − ∂ I ∂ t [ I x I y ] [ u v ] = − I t A [ u v ] = − b [ u v ] ∗ = − ( A T A ) − 1 A T b \boldsymbol{I}(x+\mathrm{d} x, y+\mathrm{d} y, t+\mathrm{d} t) \approx \boldsymbol{I}(x, y, t)+\frac{\partial \boldsymbol{I}}{\partial x} \mathrm{d} x+\frac{\partial \boldsymbol{I}}{\partial y} \mathrm{d} y+\frac{\partial \boldsymbol{I}}{\partial t} \mathrm{d} t \\ \frac{\partial \boldsymbol{I}}{\partial x} \mathrm{d} x+\frac{\partial \boldsymbol{I}}{\partial y} \mathrm{d} y+\frac{\partial \boldsymbol{I}}{\partial t} \mathrm{d} t=0\\ \frac{\partial \boldsymbol{I}}{\partial x} \frac{\mathrm{d} x}{\mathrm{d} t}+\frac{\partial \boldsymbol{I}}{\partial y} \frac{\mathrm{d} y}{\mathrm{d} t}=-\frac{\partial \boldsymbol{I}}{\partial t}\\ \left[\begin{array}{ll}{\boldsymbol{I}_{x}} & {\boldsymbol{I}_{y}}\end{array}\right]\left[\begin{array}{l}{u} \\ {v}\end{array}\right]=-\boldsymbol{I}_{t}\\ \boldsymbol{A}\left[\begin{array}{l}{u} \\ {v}\end{array}\right]=-\boldsymbol{b}\\\left[\begin{array}{l}{u} \\ {v}\end{array}\right]^{*}=-\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{T} \boldsymbol{b} I(x+dx,y+dy,t+dt)I(x,y,t)+xIdx+yIdy+tIdtxIdx+yIdy+tIdt=0xIdtdx+yIdtdy=tI[IxIy][uv]=ItA[uv]=b[uv]=(ATA)1ATb

后端优化

P ( x k ∣ x 0 , u 1 : k , z 1 : k ) P ( x k ∣ x 0 , u 1 : k , z 1 : k ) ∝ P ( z k ∣ x k ) P ( x k ∣ x 0 , u 1 : k , z 1 : k − 1 ) P ( x k ∣ x 0 , u 1 : k , z 1 : k − 1 ) = ∫ P ( x k ∣ x k − 1 , x 0 , u 1 : k , z 1 : k − 1 ) P ( x k − 1 ∣ x 0 , u 1 : k , z 1 : k − 1 ) d x k − 1 P ( x k ∣ x k − 1 , x 0 , u 1 : k , z 1 : k − 1 ) = P ( x k ∣ x k − 1 , u k ) P ( x k − 1 ∣ x 0 , u 1 : k , z 1 : k − 1 ) = P ( x k − 1 ∣ x 0 , u 1 : k − 1 , z 1 : k − 1 ) { x k = A k x k − 1 + u k + w k z k = C k x k + v k k = 1 , … , N w k ∼ N ( 0 , R ) . v k ∼ N ( 0 , Q ) P\left(\boldsymbol{x}_{k} | \boldsymbol{x}_{0}, \boldsymbol{u}_{1 : k}, \boldsymbol{z}_{1 : k}\right) \\P\left(\boldsymbol{x}_{k} | \boldsymbol{x}_{0}, \boldsymbol{u}_{1 : k}, \boldsymbol{z}_{1 : k}\right) \propto P\left(\boldsymbol{z}_{k} | \boldsymbol{x}_{k}\right) P\left(\boldsymbol{x}_{k} | \boldsymbol{x}_{0}, \boldsymbol{u}_{1 : k}, \boldsymbol{z}_{1 : k-1}\right)\\P\left(\boldsymbol{x}_{k} | \boldsymbol{x}_{0}, \boldsymbol{u}_{1 : k}, \boldsymbol{z}_{1 : k-1}\right)=\int P\left(\boldsymbol{x}_{k} | \boldsymbol{x}_{k-1}, \boldsymbol{x}_{0}, \boldsymbol{u}_{1 : k}, \boldsymbol{z}_{1 : k-1}\right) P\left(\boldsymbol{x}_{k-1} | \boldsymbol{x}_{0}, \boldsymbol{u}_{1 : k}, \boldsymbol{z}_{1 : k-1}\right) \mathrm{d} \boldsymbol{x}_{k-1}\\P\left(\boldsymbol{x}_{k} | \boldsymbol{x}_{k-1}, \boldsymbol{x}_{0}, \boldsymbol{u}_{1 : k}, \boldsymbol{z}_{1 : k-1}\right)=P\left(\boldsymbol{x}_{k} | \boldsymbol{x}_{k-1}, \boldsymbol{u}_{k}\right)\\P\left(\boldsymbol{x}_{k-1} | \boldsymbol{x}_{0}, \boldsymbol{u}_{1 : k}, \boldsymbol{z}_{1 : k-1}\right)=P\left(\boldsymbol{x}_{k-1} | \boldsymbol{x}_{0}, \boldsymbol{u}_{1 : k-1}, \boldsymbol{z}_{1 : k-1}\right)\\\left\{\begin{array}{ll}{\boldsymbol{x}_{k}=\boldsymbol{A}_{k} \boldsymbol{x}_{k-1}+\boldsymbol{u}_{k}+\boldsymbol{w}_{k}} \\ {\boldsymbol{z}_{k}=\boldsymbol{C}_{k} \boldsymbol{x}_{k}+\boldsymbol{v}_{k}}\end{array} \quad k=1, \ldots, N\right.\\\boldsymbol{w}_{k} \sim N(\mathbf{0}, \boldsymbol{R}) . \quad \boldsymbol{v}_{k} \sim N(\mathbf{0}, \boldsymbol{Q})

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值