对偶问题
上一篇我们用 x 和 y 各代表一个维度,用 z=f(x,y) 和 g(x,y)=0 分别代表一个二元函数和一个一元函数。这样做是为了和图形对比的时候能看得清楚,为了可视化方便。
一般情况下,我们就用 x 代表一个函数的自变量。这个 x 本身可以是多维的。
而且,同一个函数可能同时既有等式约束条件,又有不等式约束条件。
主问题
现在我们考虑在 d 维空间上有 m 个等式约束条件和 n 个不等式约束条件的极小化问题。这样的问题可以写作:
minf(x),其中x为d维。
s.t.hi(x)=0,i=1,2,…,m;gj(x)⩽0,j=1,2,…,n
我们把上述问题称为“原始最优化问题”,也可以叫做“原始问题”或“主问题”。
为了解决原始问题,我们引入拉格朗日乘子 λ=(λ1,λ2,…,λm)T 和 μ=(μ1,μ2,…,μn)T,构造拉格朗日函数为:
L(x,λ,μ)=f(x)+∑mi=1λihi(x)+∑nj=1μjgj(x)
然后,再设:
Γ(λ,μ)=infx∈D(f(x)+∑mi=1λihi(x)+∑nj=1μjgj(x))
其中,x∈D,D 为主问题可行域;inf(L) 表示 L 函数的下确界,inf(L(x,λ,μ)) 表示小于或者等于 L(x,λ,μ) 的极大值。
hi(x)=0,因此对于任意 λi,必然有:
∑mi=1λihi(x)=0, 其中 i=1,2,…,m。
又因为 gj(x)⩽0,因此对于 μj 均为非负的情况:μj⩾0,必然有:
∑nj=1μjgj(x)⩽0, 其中 j=1,2,…,n。
假设 ^x 是主问题可行域中的一个点,则对于任意 μj⩾0,j=1,2,…,n 和任意 λi,i=1,2,…,m,有:
Γ(λ,μ)⩽L(^x,λ,μ)⩽f(^x)
我们假设主问题的最优解是 p∗,也就是说 p∗ 是 f(^x) 所有取值中极小的那个。
又因为所有 ^x 对于任意 μj⩾0,j=1,2,…,n 和任意 λi,i=1,2,…,m,有:
Γ(λ,μ)⩽f(^x)
因此,对于任意 μj⩾0,j=1,2,…,n 和任意 λi,i=1,2,…,m 有 Γ(λ,μ)⩽p∗,也就是说,Γ(λ,μ)是主问题最优解的下确界。
对偶函数和对偶问题
在此,我们把 Γ(λ,μ) 称为对偶