正态分布方法判别,独立样本T检验及Mann-Whitney U 检验操作
一个连续型变量数据是否符合正态分布,通常有以下两种情况:一种情况是数据本身整体的分布是否符合正态分布;另一种就是数据在某个分组上是否符合正态分布。
正态性校验
数据整体是否符合正态分布
检验数据本身整体是否符合正态分布
下面是为了分析菌群α多样性指数Chao1,Shannon以及observed_otus指数在正常和模型组之间有无显著性差异,所以需要先分析Shannon这一列数据是否符合正态分布(图1)
SPSS中的操作步骤
①依次点击:“分析”-“非参数检验”-“旧对话框”-“单样本K-S”(图2),在弹出的对话框中,将“年龄”选入右侧栏中,并在下方“检验分布”中勾选“正态”(图3)选项。然后点击确定。
②分析结果
从上方SPSS的输出结果可以看出:渐近显著性(双侧)为0.073大于0.05,意味着Shannon数据整体是符合正态分布的。
检验变量在某个分组上是否符合正态分布
还是用上面的案例,如果要比较不同组别的Shannon是否有差异,这时候就需要检验Shannon在不同组别上是否符合正态分布。
某分组上是否符合正态分布
在SPSS中,正态分布的检验方法有:计算偏度系数(Skewness)和峰度系数(Kurtosis)、Kolmogorov-Smirnov检验(KS检验或D检验)、Shapiro-Wilk(SW检验或W检验)、直方图、QQ图等。
SPSS中的操作步骤
①依次点击:“分析”-“描述统计”-“探索”
②在弹出的窗口中,将“Shannon”选入因变量列表,将“性别”选入“Group”列表
③设置参数,点击右侧的“图”按钮,勾选“含检验的正态图”,点击继续,再点击确定。
④结果分析,在结果界面点击左侧“正态性检验”标签,在右侧的正态性检验表中,看夏皮洛-威尔克那部分的显著性水平
此表,是对数据的统计描述,我们可以关注下偏度(Skewness)和峰度(Kurtosis)。
偏度SK越趋近0,数据越服从正态分布,众数=中位数=平均数;SK>0,为正偏态或左偏,众数<中位数<平均数;SK<0,为负偏态或右偏,众数>中位数>平均数。
峰度KG越趋近3,数据越服从正态分布;KG>3,峰度尖锐;KG<3,峰度扁平。(或exceess_KG=KG-3,exceess_KG越趋近0,数据越服从正态分布)
但是仅根据偏度和峰度还不足以判断数据是否服从正态分布,需要做进一步的检验。
由上图正态性校验可以看出1分组P>0.05,2分组P>0.05,**这里注意了:当所有分组的P都大于0.05,就能说是符合正态分布,