矢量分析(一)

本文详细介绍了矢量分析中的基本概念,包括标量与矢量的区别,矢量的加法、数乘,以及位置矢量、距离矢量和各种积的运算。还深入探讨了标量场的梯度、矢量场的散度和旋度,以及哈密顿算子和拉普拉斯运算在场论中的应用。
摘要由CSDN通过智能技术生成

矢量分析是研究矢量场基本特性的数学工具之一,与场的物理概念相联系的有关矢量的数学关系式能够表征物理场的基本特征和一般规律,由此形成了场的基本理论。

本文会说明矢量的基本运算、标量场的梯度、矢量场的散度与旋度。

标量与矢量

在数学上,实数域内任一代数量a称为标量,只有大小没有方向。在物理学中,任意一个代数量被赋予物理单位,便成为一个具有物理意义的标量,即所谓的物理量,如电压u电流i、电荷量q均为标量。既有大小、又有方向的物理量称为矢量,一般用黑斜体表示,写为A,而细斜体字母A则表示A的大小或模。A的方向。同样,矢量一旦被赋予物理单位,便成为具有物理意义的矢量,如电场强度矢量E、磁场强度矢量H、力矢量F、速度矢量V等。

在三维空间中,一个矢量可以用三个坐标分量来表示:

\boldsymbol{A}=A_x\boldsymbol{e}_x+A_y\boldsymbol{e}_y+A_z\boldsymbol{e}_z

单位矢量是指大小等于1的矢量,可以用下面的式子表示:

\boldsymbol{e}_A=\frac {\boldsymbol{A}}{\left|\boldsymbol{A}\right|}=\frac {\boldsymbol{A}}A

A的方向特性便可通过单位矢量方便地来描述。则A可以表示为:

\boldsymbol{A}=A\boldsymbol{e}_A

矢量的加法与数乘

两个矢量相加或相减则它们的对应坐标分量相加或相减,即

\boldsymbol{A}\pm \boldsymbol{B}=(A_x\pm B_x)\boldsymbol{e}_x+(A_y\pm B_y)\boldsymbol{e}_y+(A_z\pm B_z)\boldsymbol{e}_z

一个矢量的数乘是该数量μ乘以矢量的各坐标分量,即

\mu \boldsymbol{A}=\mu A_x\boldsymbol{e}_x+\mu A_y\boldsymbol{e}_y+\mu A_z\boldsymbol{e}_z

同时矢量的加减服从交换律和结合律。

位置矢量与距离矢量

如图所示,空间中有两点的坐标是P(x,y,z)P^{\prime}(x^{\prime},y^{\prime},z^{\prime})。以坐标原点O为起点,以空间中的点P为终止点,构成的向量r,称之为P的位置矢量:

\boldsymbol{r}=x\boldsymbol{e}_x+y\boldsymbol{e}_y+z\boldsymbol{e}_z

同理可得P'的位置矢量:

\boldsymbol{r}^{\prime}=x^{\prime}\boldsymbol{e}_x+y^{\prime}\boldsymbol{e}_y+z^{\prime}\boldsymbol{e}_z

从点P'指向点P的向量R称为距离矢量:

\boldsymbol{R}=\boldsymbol{r}-\boldsymbol{r}'=(x-x')\boldsymbol{e}_x+(y-y')\boldsymbol{e}_y+(z-z')\boldsymbol{e}_z

标量积、矢量积和混合积

定义A·B为两个矢量的标量积,也可以叫做点乘或点积。标量积的运算结果为一个标量,其大小为两矢量的大小与两者夹角余弦的乘积,表示式如下:

\boldsymbol{A}\cdot \boldsymbol{B}=\left|\boldsymbol{A}\right|\left|\boldsymbol{B}\right|\cos\theta=A_xB_x+A_yB_y+A_zB_z

其中θ是两个矢量的夹角,两矢量点乘满足交换律和分配律。物理中的功、通量、环量(环流)等均为标量积。
两个矢量的矢量积A×B是一个矢量,也可以叫做矢积、叉积或叉乘,在直角坐标系中可表示为如下:

\begin{aligned}&\boldsymbol{A}\times \boldsymbol{B}=-\boldsymbol{B}\times \boldsymbol{A}=\left|\boldsymbol{A}\right|\left|\boldsymbol{B}\right|\sin\theta \boldsymbol{e}_n=\begin{vmatrix}\boldsymbol{e}_x&\boldsymbol{e}_y&\boldsymbol{e}_z\\A_x&A_y&A_z\\B_x&B_y&B_z\end{vmatrix}\\=&(A_yB_z-B_yA_z)\boldsymbol{e}_x+(A_zB_x-B_zA_x)\boldsymbol{e}_y+(A_xB_y-B_xA_y)\boldsymbol{e}_z\end{aligned}

其中θ是两矢量的夹角,eₙ就是与由AB所形成的平面垂直的矢量。物理中的力矩、角动量和线速度等都是矢量积。

矢量的叉乘满足右手系,其在空间中的图像如下:

矢量叉乘不满足交换律,但满足分配率。

矢量的混合积

三个矢量相乘,其间分别置“×”号和“·”号,称为矢量的混合标量积或三重标量积,其坐标表达式是一个由三矢量坐标组成的行列式。表示式如下:

\begin{aligned} \boldsymbol{A}\cdot(\boldsymbol{B}\times\boldsymbol{C})& =\boldsymbol{B}\cdot(\boldsymbol{C}\times\boldsymbol{A})=\boldsymbol{C}\cdot(\boldsymbol{A}\times\boldsymbol{B}) \\ &=(\boldsymbol{B}\times \boldsymbol{C})\cdot \boldsymbol{A}=(\boldsymbol{C}\times \boldsymbol{A})\cdot \boldsymbol{B}=(\boldsymbol{A}\times \boldsymbol{B})\cdot \boldsymbol{C} \\ &=-\boldsymbol{A}\cdot(\boldsymbol{C}\times\boldsymbol{B})=-\boldsymbol{B}\cdot(\boldsymbol{A}\times\boldsymbol{C})=-\boldsymbol{C}\cdot(\boldsymbol{B}\times\boldsymbol{A})\\ &=\begin{vmatrix}A_x&A_y&A_z\\[0.3em]B_x&B_y&B_z\\[0.3em]C_x&C_y&C_z\end{vmatrix} \end{aligned}

三个矢量的混合积是以三矢量为棱的六面体体积,几何意义如下图所示。

标量场与矢量场

在物理学的系统中,某些物理量在空间的分布,可以用一个空间位置和时间的函数来描述,则在此区域中确立了该物理系统的一种场。其中,有些场只需要标量函数便可描述,这些标量函数确定的状态分布称为标量场。一般可表示为f(\boldsymbol{r},t),如温度场和电势等。而有些场需要矢量函数描述,称为矢量场。一般可表示为\boldsymbol{F}(\boldsymbol{r},t),如万有引力、电场和磁场等。

标量场的梯度、矢量场的散度和旋度

哈密顿算子

首先介绍哈密顿(Hamilton)算子\nabla,它是一阶矢量微分算子,在直角坐标系中定义为:

\nabla=\boldsymbol{e}_x\:\frac\partial{\partial x}+\boldsymbol{e}_y\:\frac\partial{\partial y}+\boldsymbol{e}_z\:\frac\partial{\partial z}

哈密顿算子本身就是一个矢量,又对其后面的量进行微分运算。在具体计算时,先按矢量乘法规则展开,然后再进行微分运算。

标量场的梯度

一个标量场或者标量函数的梯度,反映的是该标量场在空间的变化率。在空间任意点,该变化率随空间的方位不同而不同,梯度表明的是最大的变化率以及对应的方向。所以,标量函数在某一点的梯度是一个矢量,梯度场是一个矢量场。

假如我们过空间任意一点(x,y,z)任取一个方向,不妨设其单位矢量为:

\boldsymbol{e}_l=\mathrm{cos}\alpha \boldsymbol{e}_x+\mathrm{cos}\beta \boldsymbol{e}_y+\mathrm{cos}\gamma \boldsymbol{e}_z

式中,cosα, cosβ,cosY表示该方向的方向余弦。考虑函数在Р点沿此方向变化△l,对应的函数值变化为△f,则在此方向的变化率为:

\begin{aligned} f_l& =\operatorname*{lim}_{\Delta t\to0}{\frac{\Delta f}{\Delta l}}={\frac{f(x+\Delta l\mathrm{cos}\alpha,y+\Delta l\mathrm{cos}\beta,z+\Delta l\mathrm{cos}\gamma)-f(x,y,z)}{\Delta l}} \\ &=\lim_{\Delta l\to0}\frac{f_x\Delta l\mathrm{cos}\alpha+f_y\Delta l\mathrm{cos}\beta+f_z\Delta l\mathrm{cos}\gamma}{\Delta l}+o(\Delta l) \\ &=f_x\mathrm{cos}\alpha+f_y\mathrm{cos}\beta+f_z\mathrm{cos}\gamma \end{aligned}

定义:\nabla f=\mathrm{grad}f=\frac{\partial f}{\partial x}\boldsymbol{e}_x+\frac{\partial f}{\partial y}\boldsymbol{e}_y+\frac{\partial f}{\partial z}\boldsymbol{e}_z

上式就是标量函数在该点的梯度函数,它是一个矢量函数。

那么原式可写为:f_l=\nabla f\cdot \boldsymbol{e}_{l}

由方向导数的推证过程和梯度的定义可以看出,函数在\boldsymbol{e}_{l}方向上的变化率,等于函数在该点的梯度在\boldsymbol{e}_{l}方向上的投影。换句话说,梯度一定是空间最大的变化率及其方向,其他方向的变化率都比梯度要小。

假设两点间距离为函数R,还有一些标量场的梯度的重要公式:

\begin{aligned} &\nabla R=\boldsymbol{e}_R \\ &\nabla\frac{1}{R}=-\:\frac{\boldsymbol{R}}{R^{3}}=-\:\frac{\boldsymbol{e}_{R}}{R^{2}} \\ &\nabla(\boldsymbol{k}\cdot \boldsymbol{r})=\boldsymbol{k} \\ &\nabla\mathrm{e}^{-\mathrm{j}\boldsymbol{k}\cdot\boldsymbol{r}}=-\mathrm{j}\mathrm{e}^{-\mathrm{j}\boldsymbol{k}\cdot\boldsymbol{r}}\boldsymbol{k} \end{aligned}

矢量场的通量与散度

矢量场\boldsymbol{F}(x,y,z)通过空间某曲面S的通量为:
\psi=\int_{S}\boldsymbol{F}\cdot\mathrm{d}\boldsymbol{S}=\int_{\boldsymbol{s}}F\cos\theta\mathrm{d}S
式中,\boldsymbol{F}=\left|\boldsymbol{F}\right|\mathrm{d}\boldsymbol{S}=\mathrm{d}S\boldsymbol{n}是面元矢量,\boldsymbol{n}是面元矢量 dS 的法线方向上的单位矢量,θ是面元矢量 dS 的方向与该点矢量场\boldsymbol{F}(x,y,z)的方向之间的夹角。矢量场的通量表明该矢量场通过曲面 S 的流量的大小。

若S是矢量场中的一个闭合曲面,显然,F通过该闭合曲面的通量为:

\varphi=\oint_S\boldsymbol{F}\cdot\mathrm{d}\boldsymbol{S}=\oint_SF\cos\theta\mathrm{d}S

对于一个闭合曲面,通常定义曲面的正方向为外法线方向,该方向由闭合曲面内部指向曲面外部。

闭合曲面的通量可以描述曲面内部有无“源”“汇”,但不够精确。大多数情况下,需要知道在空间中的一个特定点,有没有“源”或“汇”,这就是散度的概念。

当闭合曲面S逐渐收缩为一点P,如果极限\lim_{\Delta V\to0}\frac{\oint_{S}\boldsymbol{F}\cdot\mathrm{d}\boldsymbol{S}}{\Delta V}存在,那么就称之为矢量场在这一点的散度,记作\mathrm{div}\boldsymbol{F}或者\nabla \cdot F

\mathrm{div}\boldsymbol{F}=\lim_{\Delta V\to0}\frac{\oint_{S}\boldsymbol{F}\cdot\mathrm{d}\boldsymbol{S}}{\Delta V}

此式表明,矢量场F的散度是一个标量,它表示空间某点单位体积内散发出的矢量的通量,即通量体密度,反映出矢量场在该点通量源的强度。在直角坐标系内有公式:

\mathrm{div}\boldsymbol{F}=\frac{\partial F_x}{\partial x}+\frac{\partial F_y}{\partial y}+\frac{\partial F_z}{\partial z}

如果散度大于0,说明这个点是有源的,向外发出一系列的流线。如果散度小于0,说明这个点是有汇聚的,吸收周围的的一系列流线。如果散度等于0,说明这个点没有源也没有汇聚。质量线在这个点上都是连续的,不会中断。

空间两点间的距离矢量R的散度为:

\nabla\boldsymbol{\cdot}\boldsymbol{R}=\dfrac{\partial(x-x')}{\partial x}+\dfrac{\partial(y-y')}{\partial y}+\dfrac{\partial(z-z')}{\partial z}=3

矢量场的环量与旋度

矢量场F沿闭合路径l的环量或环流定义为:

\oint_{\iota}\boldsymbol{F}\cdot\mathrm{d}\boldsymbol{l}=\oint_{\iota}F\cos\theta\mathrm{d}l

式中,θ是线元矢量dl与该点矢量场F之间的夹角。若矢量场F是力,则其沿闭合路径l的环量就是该力沿闭合路径所做的功。

假设矢量场F为流速场,在水体中有旋涡的地方沿旋涡边沿做环路积分,图中粗线表示水流方向,细线表示积分路径。因为图中所示两矢量同方向,每个积分微元都大于零,此积分值一定不为零。环量大于零表示旋涡是逆时针旋转,小于零表示顺时针旋转。如下图所示:

同样的道理,如果在没有旋涡的地方(水流平稳处)做环路积分。则积分值一定为零。环量或者环流,可以大致表述矢量场有无旋涡。如下图所示,任何一个P1点都可以找到跟它相对的P2点这两个点之间的流速方向是恰好相反的,所以总和为0。

想要精细地考量矢量场中任意一点是否有旋涡,就必须引人旋度的概念。矢量场F的旋度定义为:

\nabla\times \boldsymbol{F}=\mathrm{rot}\boldsymbol{F}=\lim_{\Delta S\to0}\frac{\left[\boldsymbol{n}\oint_{l}\boldsymbol{F}\cdot\mathrm{d}\boldsymbol{l}\right]_{\mathrm{max}}}{\Delta S}

此式表明,矢量场F的旋度仍然是一个矢量。l是围绕曲面S边缘的闭合路径,且l的绕向与曲面S的正法线方向符合右手螺旋关系。

旋度的大小反映了空间某点环量面密度最大值,\boldsymbol{n}就是此时面元的法线方向单位矢量。当面元ds的法线方向单位矢量\boldsymbol{n}与该点旋度的方向存在夹角θ时,该点的环量面密度可表示为\mathrm{rot}\boldsymbol{F} \cdot \boldsymbol{n},即旋度在该方向上的投影。

在直角坐标系内,旋度表示为:

\text{rot}\boldsymbol{F}=\begin{vmatrix}\boldsymbol{e}_x&\boldsymbol{e}_y&\boldsymbol{e}_z\\\frac{\partial}{\partial x}&\frac{\partial}{\partial y}&\frac{\partial}{\partial z}\\F_x&F_y&F_z\end{vmatrix}=\begin{pmatrix}\frac{\partial F_z}{\partial y}-\frac{\partial F_y}{\partial z}\end{pmatrix}\mathbf{e}_x+\begin{pmatrix}\frac{\partial F_x}{\partial z}-\frac{\partial F_z}{\partial x}\end{pmatrix}\mathbf{e}_y+\begin{pmatrix}\frac{\partial F_y}{\partial x}-\frac{\partial F_x}{\partial y}\end{pmatrix}\mathbf{e}_z

场的拉普拉斯运算

二阶标量微分运算称为拉普拉斯算子,他是通过两个哈密顿算子的点乘而得来的,即二重哈密顿算子,在直角坐标系中记作:

\nabla^2=\Delta=\nabla\cdot\nabla=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2}

对标量场进行拉普拉斯运算则可得:

\nabla^2f=\frac{\partial^2f}{\partial x^2}+\frac{\partial^2f}{\partial y^2}+\frac{\partial^2f}{\partial z^2}

对矢量场进行拉普拉斯运算则可得:

\nabla^2\boldsymbol{F}=\frac{\partial^2\boldsymbol{F}}{\partial x^2}+\frac{\partial^2\boldsymbol{F}}{\partial y^2}+\frac{\partial^2\boldsymbol{F}}{\partial z^2} =\boldsymbol{e}_{x}\:\nabla^{2}F_{x}+\boldsymbol{e}_{y}\:\nabla^{2}F_{y}+\boldsymbol{e}_{z}\:\nabla^{2}F_{z}

可见它的结果仍然是一个矢量,相当于对矢量场的三个分量分别做拉普拉斯运算。

  • 14
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值