电网的正序参数和等值电路(一)

本篇为本科课程《电力系统稳态分析》的笔记。

本篇为这一章的第一篇笔记。下一篇传送门

电力系统正常运行中,可以认为系统的三相结构和三相负荷完全对称。而对称三相的计算可以用一相来完成,其中所有给出的标称电压都是线电压有效值,假定系统全部是Y-Y型连接,不是Y-Y型连接的全部要变换成Y-Y型连接,在这种情况下线电压为相电压的 3 \sqrt{3} 3 倍,即 U ˙ L = 3 U ˙ P \dot{U}_L=\sqrt{3}\dot{U}_P U˙L=3 U˙P,而线电流等于相电流,即 I ˙ L = I ˙ P \dot{I}_L=\dot{I}_P I˙L=I˙P。三相系统的计算公式为:

U ˙ = 3 Z I ˙ S ~ = 3 U ˙ I ˙ ∗ = 3 U I ∠ ( θ u − θ i ) = 3 U I ∠ φ = S ( cos ⁡ φ + j sin ⁡ φ ) = P + j Q \dot{U}=\sqrt{3}Z\dot{I}\\\\ \widetilde{S}=\sqrt{3}\dot{U}\dot{I}^{*}=\sqrt{3}UI\angle(\theta_u-\theta_i)=\sqrt{3}UI\angle\varphi=S(\cos \varphi +j\sin \varphi )=P+jQ U˙=3 ZI˙S =3 U˙I˙=3 UI(θuθi)=3 UIφ=S(cosφ+jsinφ)=P+jQ

其中, S ~ , S , P , Q \widetilde{S},S,P,Q S ,S,P,Q分别表示三相复功率、三相视在功率、三相有功功率、三相无功功率, U U U是线电压有效值, θ u \theta_u θu是相电压相角, I I I是线电流有效值, θ i \theta_i θi是相电流相位, I ˙ ∗ \dot{I}^{*} I˙ I ˙ \dot{I} I˙的共轭, Z Z Z是一个相的阻抗, φ = θ u − θ i \varphi=\theta_u-\theta_i φ=θuθi是功率因数角。

阻抗用 Z = R + j X Z=R+jX Z=R+jX表示,导纳用 Y = G + j B Y=G+jB Y=G+jB表示:

  1. 对于感性情况,X取正,B取负。
  2. 对于容性情况,X取负,B取正。

电力线路的数学模型

电力线路的电路等效可以是下图。

在这里插入图片描述

可以不断向右级联。原参数有 R 0 , G 0 , L 0 , C 0 R_0,G_0,L_0,C_0 R0,G0,L0,C0

可以根据参数求出波阻抗 Z C = R 0 + j ω L 0 G 0 + j ω C 0 Z_C=\sqrt{\frac{R_0+j\omega L_0}{G_0+j\omega C_0}} ZC=G0+C0R0+L0 和传播系数 Γ = ( R 0 + j ω L 0 ) ( G 0 + j ω C 0 ) \Gamma=\sqrt{(R_0+j\omega L_0)(G_0+j\omega C_0)} Γ=(R0+L0)(G0+C0)

线路的电阻

有色金属导线的直流电阻计算为:
r 1 = ρ S r_1=\frac{\rho}{S} r1=Sρ
其中, r 1 r_1 r1是单位长度电阻, ρ \rho ρ是材料的电阻率, S S S是载流部分的截面积。

有色金属指的是铜和铝等,而与之对应的是黑色金属,例如铁、铬、镍。铜的电阻率为18.8,铝的电阻率为31.5。
实际计算值需要考虑:

  1. 导线流过三项工频交流电流时,存在肌肤效应和临近效应,交流电阻更大。
  2. 导线由多股导体扭绞而成,实际长度比导线长度大2%~3%。
  3. 实际面积比标称截面积略小。

高压输电线路中,一般采用钢芯铝绞线,实际的电流截面积比导线截面积要小。

计算精度较高时,要根据实际温度进行修正:

r t = r 20 [ 1 + α ( t − 20 ) ] r_t=r_{20}[1+\alpha(t-20)] rt=r20[1+α(t20)]

其中, r t r_t rt = r 20 =r_{20} =r20分别为t温度和20度时的电阻, α \alpha α是电阻温度系数,钢是0.00382/C°,铝是0.0036/C°。

少量线路用钢导线,而架空线路一般用钢导线。

线路的电抗

对于导线:磁链 ψ = N B S \psi=NBS ψ=NBS,其中,N是线圈匝数,B是产生的磁场,S是截面积。回路电动势 ϵ = − d ψ d t \epsilon=-\frac{d\psi}{dt} ϵ=dtdψ。回路电感 L = ψ i L=\frac{\psi}{i} L=iψ

长直导线的磁链

假设导线为圆长直导线。

导体内部磁链计算

对于图中导线内部的磁场,先计算流过导线内半径为 x ( x < r ) x(x<r) x(x<r)的圆截面的电流:
i = i π x 2 π r 2 = i x 2 r 2 i=i\frac{\pi x^2}{\pi r^2}=i\frac{x^2}{r^2} i=iπr2πx2=ir2x2

然后使用安培环路定律,得到半径x的圆上沿着圆切线方向的磁场强度大小:
H ′ = i 2 π x × x 2 r 2 = i x 2 π r 2 H^{\prime}=\frac{i}{2\pi x}\times\frac{x^{2}}{r^{2}}=\frac{ix}{2\pi r^{2}} H=2πxi×r2x2=2πr2ix

如果相对磁导率不是1,那么磁通密度就是:
B ′ = μ H ′ = μ i x 2 π r 2 ( T ) ( x < r ) B^{\prime}=\mu H^{\prime}=\frac{\mu ix}{2\pi r^{2}}\quad(T)\quad (x<r) B=μH=2πr2μix(T)(x<r)

导线内部距离中心x处,厚度为dx,长度为1m的中空圆柱体内,总磁通为:
d ϕ ′ = B ′ d x × 1 = μ i 2 π r 2 x d x \mathrm{d}\phi^{\prime}=B^{\prime}\mathrm{d}x\times1=\frac{\mu i}{2\pi r^{2}}x\mathrm{d}x dϕ=Bdx×1=2πr2μixdx

而这一部分并不匝链整个导线,只是匝链导线x半径之内的部分,所以与之对应的磁链是:

d ϕ ′ = d ϕ ′ × π x 2 π r 2 = μ i 2 π r 4 x 3 d x \mathrm{d}\phi^{\prime}=\mathrm{d}\phi^{\prime}\times\frac{\pi x^{2}}{\pi r^{2}}=\frac{\mu i}{2\pi r^{4}}x^{3}dx dϕ=dϕ×πr2πx2=2πr4μix3dx

算出来导线内部的总体磁链为:
ψ ′ = ∫ 0 r d ψ ′ = μ i 2 π r 4 × r 4 4 = μ i 8 π \psi^{\prime}=\int_{0}^{r}\mathrm{d}\psi^{\prime}=\frac{\mu i}{2\pi r^{4}}\times\frac{r^{4}}{4}=\frac{\mu i}{8\pi} ψ=0rdψ=2πr4μi×4r4=8πμi

内部磁链与导线半径无关,只和电流和导线材料有关。

导体外部磁链计算

使用安培环路定律,得到半径x的圆上沿着圆切线方向的磁场强度大小:
H ′ ′ = i 2 π x H^{\prime\prime}=\frac{i}{2\pi x} H′′=2πxi

外部为空气,那么磁通密度为:
B ′ ′ = μ 0 i 2 π x ( x < r ) B^{\prime\prime}=\frac{\mu_0 i}{2\pi x}\quad (x<r) B′′=2πxμ0i(x<r)

导线外部距离中心x处,厚度为dx,长度为1m的中空圆柱体内,总磁通为:
d ϕ ′ ′ = B ′ ′ d x × 1 = μ 0 i d x 2 π x \mathrm{d}\phi^{\prime\prime}=B^{\prime\prime}\mathrm{d}x\times1=\mu_{0}i\frac{\mathrm{d}x}{2\pi x} dϕ′′=B′′dx×1=μ0i2πxdx

这一磁通围绕整个导线,所以与之对应的磁链是:
d ψ ′ ′ = d ϕ ′ ′ × 1 = μ 0 i d x 2 π x \mathrm{d}\psi^{\prime\prime}=\mathrm{d}\phi^{\prime\prime}\times 1=\mu_{0}i\frac{\mathrm{d}x}{2\pi x} dψ′′=dϕ′′×1=μ0i2πxdx

这样就可以计算出从表面开始到半径为D的中空圆柱体内的全部外部磁通所形成的磁链:
ψ ′ ′ = ∫ r D μ 0 i d x 2 π x = μ 0 i 2 π ln ⁡ D r \psi^{\prime\prime}=\int_{r}^{D}\mu_{0}i\frac{\mathrm{d}x}{2\pi x}=\frac{\mu_{0}i}{2\pi}\ln\frac Dr ψ′′=rDμ0i2πxdx=2πμ0ilnrD

也可以算出导线外一点的半径 D 1 D_1 D1到导线外另一点的半径 D 2 D_2 D2之间的形成的中空圆柱体内的全部磁通形成的磁链:
ψ 12 ′ ′ = ∫ D 1 D 2 μ 0 i   d x 2 π x = μ 0 i 2 π ln ⁡ D 2 D 1 \psi_{12}^{\prime\prime}=\int_{D_{1}}^{D_{2}}\mu_{0}i\:\frac{\mathrm{d}x}{2\pi x}=\frac{\mu_{0}i}{2\pi}\ln\frac{D_{2}}{D_{1}} ψ12′′=D1D2μ0i2πxdx=2πμ0ilnD1D2

将导体的内部磁链 ψ ′ \psi^{\prime} ψ和导线表面开始到半径D的圆以内的外部磁链 ψ ′ ′ \psi^{\prime\prime} ψ′′相加,就是总磁链:
ψ = ψ ′ + ψ ′ ′ = ( ln ⁡ D r + μ r 4 ) μ 0 i 2 π ( Wb/m ) \psi=\psi^{\prime}+\psi^{\prime\prime}=(\ln\frac{D}{r}+\frac{\mu_r}{4})\frac{\mu_0 i}{2\pi}\quad(\text{Wb/m}) ψ=ψ+ψ′′=(lnrD+4μr)2πμ0i(Wb/m)

与之对应的电感可以算得:
L = ( 2 ln ⁡ D r + μ r 2 ) × 1 0 − 7 ( H/m ) L=(2\ln\frac{D}{r}+\frac{\mu_{r}}{2})\times10^{-7}\quad(\text{H/m}) L=(2lnrD+2μr)×107(H/m)

三相线路的正序等值电抗

三相导线是平行架设的,可以把他们看成三根无限长直的平行导线。三相中流过对称的正序电流时,三相电流总和为0。

首先考虑一般情况,三相导线任意排列,他们之间的距离为 D a b , D b c , D c a D_{ab},D_{bc},D_{ca} Dab,Dbc,Dca,并设三根导线和空间内一点x的距离分别为 D a x , D b x , D c x D_{ax},D_{bx},D_{cx} Dax,Dbx,Dcx。令各相中流过的电流分别为 i a , i b , i c i_a,i_b,i_c ia,ib,ic

先计算匝链a相导线的总磁链,是三相电流对其产生的磁链之和,先计算a相自己的磁链:
ψ a a = ( ln ⁡ D a x r + μ r 4 ) μ 0 i a 2 π \psi_{aa}=(\ln\frac{D_{ax}}{r}+\frac{\mu_r}{4})\frac{\mu_0 i_a}{2\pi} ψaa=(lnrDax+4μr)2πμ0ia

然后是b相对a相产生的磁链,可以看成是从两导线之间距离为 D a b D_{ab} Dab开始匝链a相导线,直到距离 D b x D_{bx} Dbx结束:
ψ b a = i b μ 0 2 π ln ⁡ D b x D a b \psi_{ba}=i_b\frac{\mu_0}{2\pi}\ln\frac{D_{bx}}{D_{ab}} ψba=ib2πμ0lnDabDbx

同理可得c相对a相产生的磁链:
ψ c a = i c μ 0 2 π ln ⁡ D c x D c a \psi_{ca}=i_c\frac{\mu_0}{2\pi}\ln\frac{D_{cx}}{D_{ca}} ψca=ic2πμ0lnDcaDcx

将上述三个式子相加,得到a相导线的总磁链:
ψ a = ψ a a + ψ b a + ψ c a = i a ( μ 8 π + μ 0 2 π ln ⁡ D a x r ) + i b μ 0 2 π ln ⁡ D b x D a b + i c μ 0 2 π ln ⁡ D c x D c a \psi_a=\psi_{aa}+\psi_{ba}+\psi_{ca}=i_a(\frac{\mu}{8\pi}+\frac{\mu_0}{2\pi}\ln\frac{D_{ax}}{r})+i_b\frac{\mu_0}{2\pi}\ln\frac{D_{bx}}{D_{ab}}+i_c\frac{\mu_0}{2\pi}\ln\frac{D_{cx}}{D_{ca}} ψa=ψaa+ψba+ψca=ia(8πμ+2πμ0lnrDax)+ib2πμ0lnDabDbx+ic2πμ0lnDcaDcx

为了考虑a相导线的全部磁链,将x移到无穷远处,有 D a x ≈ D b x ≈ D c x D_{ax}\approx D_{bx}\approx D_{cx} DaxDbxDcx,而且三相对称,有 i a + i b + i c = 0 i_a+i_b+i_c=0 ia+ib+ic=0,可以得到a相导线单位长度的总磁链为:
ψ a = [ μ r 2 i a + 2 ( i a ln ⁡ 1 r + i b ln ⁡ 1 D a b + i c ln ⁡ 1 D c a ) ] × 1 0 − 7 \psi_{a}=\left[\frac{\mu_{r}}{2}i_{a}+2\left(i_{a}\ln\frac{1}{r}+i_{b}\ln\frac{1}{D_{ab}}+i_{c}\ln\frac{1}{D_{ca}}\right)\right]\times10^{-7} ψa=[2μria+2(ialnr1+iblnDab1+iclnDca1)]×107
同理可得到b相和c相的:
ψ b = [ μ r 2 i b + 2 ( i b ln ⁡ 1 r + i a ln ⁡ 1 D a b + i c ln ⁡ 1 D b c ) ] × 1 0 − 7 ψ c = [ μ r 2 i c + 2 ( i c ln ⁡ 1 r + i b ln ⁡ 1 D b c + i a ln ⁡ 1 D c a ) ] × 1 0 − 7 \psi_{b}=\left[\frac{\mu_{r}}{2}i_{b}+2(i_{b}\ln\frac{1}{r}+i_{a}\ln\frac{1}{D_{ab}}+i_{c}\ln\frac{1}{D_{bc}})\right]\times10^{-7}\\\\ \psi_{c}=\left[\frac{\mu_{r}}{2}i_{c}+2(i_{c}\ln\frac{1}{r}+i_{b}\ln\frac{1}{D_{bc}}+i_{a}\ln\frac{1}{D_{ca}})\right]\times10^{-7} ψb=[2μrib+2(iblnr1+ialnDab1+iclnDbc1)]×107ψc=[2μric+2(iclnr1+iblnDbc1+ialnDca1)]×107

ψ a , ψ b , ψ c \psi_{a},\psi_{b},\psi_{c} ψa,ψb,ψc不但与本导线电流有关,还取决于其他两相的电流,当 D a b ≠ D b c ≠ D c a D_{ab}\neq D_{bc} \neq D_{ca} Dab=Dbc=Dca时,三者电抗均不相等。在实际中为了使三相线路阻抗对称,常常隔一定距离将三相导线进行换位,使得每相导线均匀分布在三个位置上。

下图是输电线路的换位示意图:

在这里插入图片描述

对于a相, 1 3 \frac{1}{3} 31的长度在位置1,再有 1 3 \frac{1}{3} 31的长度在位置2,最后 1 3 \frac{1}{3} 31的长度在位置3,可以列出三个位置的磁链为:
ψ a ( 1 ) = [ μ r 2 i a + 2 ( i a ln ⁡ 1 r + i b ln ⁡ 1 D a b + i c ln ⁡ 1 D c a ) ] × 1 0 − 7 ψ a ( 2 ) = [ μ t 2 i a + 2 ( i a ln ⁡ 1 r + i b ln ⁡ 1 D b c + i c ln ⁡ 1 D a b ) ] × 1 0 − 1 ψ a ( 3 ) = [ μ t 2 i a + 2 ( i a ln ⁡ 1 r + i b ln ⁡ 1 D c a + i c ln ⁡ 1 D b c ) ] × 1 0 − 1 \psi_{a}^{(1)} =\left[\frac{\mu_{r}}{2}i_{a}+2\left(i_{a}\ln\frac{1}{r}+i_{b}\ln\frac{1}{D_{ab}}+i_{c}\ln\frac{1}{D_{ca}}\right)\right]\times10^{-7} \\\\ \psi_{a}^{(2)} =\left[\frac{\mu_{t}}{2}i_{a}+2\left(i_{a}\ln\frac{1}{r}+i_{b}\ln\frac{1}{D_{bc}}+i_{c}\ln\frac{1}{D_{ab}}\right)\right]\times10^{-1} \\\\ \psi_{a}^{(3)} =\left[\frac{\mu_{t}}{2}i_{a}+2\left(i_{a}\ln\frac{1}{r}+i_{b}\ln\frac{1}{D_{ca}}+i_{c}\ln\frac{1}{D_{bc}}\right)\right]\times10^{-1} ψa(1)=[2μria+2(ialnr1+iblnDab1+iclnDca1)]×107ψa(2)=[2μtia+2(ialnr1+iblnDbc1+iclnDab1)]×101ψa(3)=[2μtia+2(ialnr1+iblnDca1+iclnDbc1)]×101

三者平均之后,得到a相导线的平均总磁链:
ψ a = 1 3 ( ψ a ( 1 ) + ψ a ( 2 ) + ψ a ( 3 ) ) = 2 3 [ 3 i a ln ⁡ 1 r + ( i b + i c ) ( ln ⁡ 1 D a b D b c D a a ) + 3 μ t 4 i a ] × 1 0 − 1 \begin{aligned}\psi_{a}&=\frac{1}{3}(\psi_{a}^{(1)}+\psi_{a}^{(2)}+\psi_{a}^{(3)})\\&=\frac{2}{3}\Big[3i_{a}\ln\frac{1}{r}+(i_{b}+i_{c})\Big(\ln\frac{1}{D_{ab}D_{bc}D_{aa}}\Big)+\frac{3\mu_{t}}{4}i_{a}\Big]\times10^{-1}\end{aligned} ψa=31(ψa(1)+ψa(2)+ψa(3))=32[3ialnr1+(ib+ic)(lnDabDbcDaa1)+43μtia]×101

同理可以列出其他两相的表达式,可以写成一个矩阵形式:
[ ψ a ψ b ψ c ] = [ L s L m L m L m L s L m L m L m L s ] [ i a i b i c ] {\left[ \begin{array}{c} \psi_{a} \\ \psi_{b} \\ \psi_{c} \end{array} \right ]}= { \left[ \begin{array}{ccc} L_s & L_m & L_m \\ L_m & L_s & L_m \\ L_m & L_m & L_s \end{array} \right ] } {\left[ \begin{array}{c} i_{a} \\ i_{b} \\ i_{c} \end{array} \right ]} ψaψbψc = LsLmLmLmLsLmLmLmLs iaibic

将三相对称电流条件 i b + i c = − i a i_b+i_c=-i_a ib+ic=ia带入得到:
4a = ( 2 ln ⁡ 1 r + 2 ln ⁡ D a b D b c D c a 3 + μ r 2 ) i a × 1 0 − γ = ( 2 ln ⁡ D a b D b c D c a 3 r + μ r 2 ) i a × 1 0 − γ = ( 2 ln ⁡ D m r + μ r 2 ) i a × 1 0 − 7 \begin{aligned} \text{4a}& =\left(2\ln\frac{1}{r}+2\ln\sqrt[3]{D_{ab}D_{bc}D_{ca}}+\frac{\mu_{r}}{2}\right)i_{a}\times10^{-\gamma} \\ &=\left(2\ln\frac{\sqrt[3]{D_{ab}D_{bc}D_{ca}}}{r}+\frac{\mu_{r}}{2}\right)i_{a}\times10^{-\gamma} \\ &=\left(2\ln\frac{D_{m}}{r}+\frac{\mu_{r}}{2}\right)i_{a}\times10^{-7}& \end{aligned} 4a=(2lnr1+2ln3DabDbcDca +2μr)ia×10γ=(2lnr3DabDbcDca +2μr)ia×10γ=(2lnrDm+2μr)ia×107

其中, D m = D a b D b c D c a 3 D_{m}=\sqrt[3]{D_{ab}D_{bc}D_{ca}} Dm=3DabDbcDca ,为三相导线的互几何间距。

可以算出a相每米的正序电感值:
L a = ( 2 ln ⁡ D m r + μ 2 ) × 1 0 − 7 ( H / m ) L_{a}=\left(2\ln\frac{D_{m}}{r}+\frac{\mu}{2}\right)\times10^{-7}\quad\left(H/m\right) La=(2lnrDm+2μ)×107(H/m)
经过换位,三相的电感是相等的。

另外,利用矩阵也可以算出结果:
ψ a = ( L s − L m ) i a = L i a \psi_a=(L_s-L_m)i_a=Li_a ψa=(LsLm)ia=Lia

可以算出线路每相没钱买的等值电抗:
x 1 = ω L = 2 π f ( 4.6 lg ⁡ D m r + 0.5 μ r ) × 1 0 − 4 ( Ω /km ) x_1=\omega L=2\pi f(4.6\lg\frac{D_m}{r}+0.5\mu_r)\times 10^{-4}\quad(\Omega\text{/km}) x1=ωL=2πf(4.6lgrDm+0.5μr)×104(Ω/km)

工频下,有
x 1 = 0.1445 l g D m r + 0.0157 μ r = 0.1445 lg ⁡ D m r ′ x_{1}=0.1445lg\frac{D_{m}}{r}+0.0157\mu_{r}=0.1445\lg\frac{D_{m}}{r'} x1=0.1445lgrDm+0.0157μr=0.1445lgrDm

对于非铁磁材料的单股导线,取$ μ r = 1 , r ′ = 0.779 r \mu_r=1,r'=0.779r μr=1,r=0.779r;对于多层多股的钢芯铝绞线,实际上取 r ′ = 0.81 r r'=0.81r r=0.81r。存在关系 r ′ = r e − μ r 4 r'=re^{-\frac{\mu_r}{4}} r=re4μr

分裂导线线路的电抗

高压输电中为了防止高压电作用下导线周围空气游离而发生电晕,往往采用分裂导线。分裂导线增大了导线半径,所以可以减少导线表面的电场强度。

采用丝分裂导线的三相线路示意图:

在这里插入图片描述

对于每相具有n根导体的分裂导线,等值电抗为:
x 1 = 0.1445 lg ⁡ D m r e q + 0.0157 n μ r ( Ω / km ) x_1=0.1445\lg\frac{D_m}{r_{eq}}+\frac{0.0157}{n}\mu_r\quad(\Omega/\text{km}) x1=0.1445lgreqDm+n0.0157μr(Ω/km)

而分裂导线的等值半径为:
r e q = r d 12 d 13 … d 1 n 3 = r d m n − 1 n r_{eq}=\sqrt[3]{rd_{12}d_{13}\dots d_{1n}}=\sqrt[n]{rd_m^{n-1}} req=3rd12d13d1n =nrdmn1

其中 r r r是单根导体的半径, d 12 , d 13 , … d 1 n d_{12},d_{13},\dots d_{1n} d12,d13,d1n是同一相中一根导体和其余n-1根导体之间的距离, d m d_m dm是导体之间的几何间距。

分裂根数越大,造价越高,一般分裂根数为 2 , 3 , 4 2,3,4 2,3,4时,每千米的电抗分别为 0.33 , 0.30 , 0.28 Ω 0.33,0.30,0.28\Omega 0.33,0.30,0.28Ω

线路的电纳

单根长直导线的电场分布

设导线单位长度的电荷为 q q q,应用高斯通量定律,距离导线中心距离x处的电通密度为:
D = q 2 π x ( C / m ) D=\frac{q}{2\pi x}\quad\mathrm{(C/m)} D=2πxq(C/m)

相应的电场强度为:
E = D ϵ ( V / m ) E=\frac{D}{\epsilon}\quad\mathrm{(V/m)} E=ϵD(V/m)

如果是空气的话, ϵ = ϵ 0 \epsilon=\epsilon_0 ϵ=ϵ0,则:
E = q 2 π ε 0 x E=\frac{q}{2\pi\varepsilon_{0}x} E=2πε0xq

单根长直导线表面与距离中心D处的点位差为:
u r D = v r − v D = − ∫ D r E d x = − ∫ D r q 2 π ε 0 d x x = q 2 π ε 0 ln ⁡ D r ( V ) u_{rD}=v_{r}-v_{D}=-\int_{D}^{r}Edx=-\int_{D}^{r}\frac{q}{2\pi\varepsilon_{0}}\frac{dx}{x}=\frac{q}{2\pi\varepsilon_{0}}\ln\frac{D}{r}\left(V\right) urD=vrvD=DrEdx=Dr2πε0qxdx=2πε0qlnrD(V)

导线外部一点a,到另一点b,其与导线中心的距离分别为 D 1 , D 2 D_1,D_2 D1,D2,那么他们之间的电位差为:
u 12 = v 1 − v 2 = q 2 π ε 0 ln ⁡ D 2 D 1 u_{12}=v_{1}-v_{2}=\frac{q}{2\pi\varepsilon_{0}}\ln\frac{D_{2}}{D_{1}} u12=v1v2=2πε0qlnD1D2

三相线路的正序电纳

大地会对三相线路周围的电场产生影响,常常将三相线看成无限长直导线,然后利用镜像法求出电场分布。方法是导线距离大地为H,在导线下方距离2H处放置一个带有等量负电荷的导线。

在这里插入图片描述

如图所示,可以计算出a相的导线和a相的镜像导线产生的相对于地面的电压,分别为:
u a + = q a 2 π ε 0 ln ⁡ H r u a − = − q a 2 π ε 0 ln ⁡ H H 1 − r u_{a+}=\frac{q_a}{2\pi\varepsilon_0}\ln\frac{H}{r}\\\\ u_{a-}=-\frac{q_a}{2\pi\varepsilon_0}\ln\frac{H}{H_1-r} ua+=2πε0qalnrHua=2πε0qalnH1rH

所以,a相及其镜像产生的a相导线真实的对地面的电压为两个电压的相加:
u a a = u a + + u a − = q a 2 π ε 0 ln ⁡ H 1 r u_{aa}=u_{a+}+u_{a-}=\frac{q_a}{2\pi\varepsilon_0}\ln\frac{H_1}{r} uaa=ua++ua=2πε0qalnrH1

同样的步骤,可以求出b、c相及其镜像产生的a相导线真实的对地面的电压:
u a b = q b 2 π ε 0 ln ⁡ H 12 D a b u a c = q c 2 π ε 0 ln ⁡ H 13 D a c u_{ab}=\frac{q_b}{2\pi\varepsilon_0}\ln\frac{H_{12}}{D_{ab}}\\\\ u_{ac}=\frac{q_c}{2\pi\varepsilon_0}\ln\frac{H_{13}}{D_{ac}} uab=2πε0qblnDabH12uac=2πε0qclnDacH13

同样的过程,可以写出b、c相导线真实的对地面的电压,并列写成矩阵的形式:
[ u a u b u c ] = [ α a a α a b α a c α b a α b b α b c α c a α c b α c c ] [ q a q b q c ] {\left[ \begin{array}{c} u_{a} \\ u_{b} \\ u_{c} \end{array} \right ]}= { \left[ \begin{array}{ccc} \alpha_{aa} & \alpha_{ab} & \alpha_{ac} \\ \alpha_{ba} & \alpha_{bb} & \alpha_{bc} \\ \alpha_{ca} & \alpha_{cb} & \alpha_{cc} \end{array} \right ] } {\left[ \begin{array}{c} q_{a} \\ q_{b} \\ q_{c} \end{array} \right ]} uaubuc = αaaαbaαcaαabαbbαcbαacαbcαcc qaqbqc

其中参数为:
α a a = 1 2 π ε 0 ln ⁡ H 1 r α b b = 1 2 π ε 0 ln ⁡ H 2 r α c c = 1 2 π ε 0 ln ⁡ H 3 r α a b = α b a = 1 2 π ε 0 ln ⁡ H 12 D a b α a c = α c a = 1 2 π ε 0 ln ⁡ H 13 D a c α b c = α c b = 1 2 π ε 0 ln ⁡ H 23 D b c \alpha_{aa} =\frac{1}{2\pi\varepsilon_{0}}\ln\frac{H_{1}}{r} \\\\ \alpha_{bb} =\frac{1}{2\pi\varepsilon_{0}}\ln\frac{H_{2}}{r} \\\\ \alpha_{cc} =\frac{1}{2\pi\varepsilon_{0}}\ln\frac{H_{3}}{r} \\\\ \alpha_{ab}=\alpha_{ba}=\frac{1}{2\pi\varepsilon_{0}}\ln\frac{H_{12}}{D_{ab}}\\\\ \alpha_{ac}=\alpha_{ca}=\frac{1}{2\pi\varepsilon_{0}}\ln\frac{H_{13}}{D_{ac}}\\\\ \alpha_{bc}=\alpha_{cb}=\frac{1}{2\pi\varepsilon_{0}}\ln\frac{H_{23}}{D_{bc}} αaa=2πε01lnrH1αbb=2πε01lnrH2αcc=2πε01lnrH3αab=αba=2πε01lnDabH12αac=αca=2πε01lnDacH13αbc=αcb=2πε01lnDbcH23

α i i \alpha_{ii} αii α i j \alpha_{ij} αij分别为自电位系数和互电位系数。

这是一个对称矩阵,但不是平衡矩阵。

第一种假设

导线为良好导体,没有压降,且 U 1 = U 2 = U 3 U_1=U_2=U_3 U1=U2=U3。采用上文所述(在三相线路的正序等值电抗小节中)的换位方式时,可以写出第一、二、三段的三相电压和电荷的关系:

  1. 第一段
    [ u a u b u c ] = [ α a a α a b α a c α b a α b b α b c α c a α c b α c c ] [ q a ( 1 ) q b ( 1 ) q c ( 1 ) ] \begin{bmatrix}u_{a}\\\\ u_{b}\\\\ u_{c}\end{bmatrix}=\begin{bmatrix}\alpha_{aa}&\alpha_{ab}&\alpha_{ac} \\\\\alpha_{ba}&\alpha_{bb}&\alpha_{bc} \\\\\alpha_{ca}&\alpha_{cb}&\alpha_{cc}\end{bmatrix}\begin{bmatrix}q_{a}^{(1)} \\\\q_{b}^{(1)} \\\\q_{c}^{(1)}\end{bmatrix} uaubuc = αaaαbaαcaαabαbbαcbαacαbcαcc qa(1)qb(1)qc(1)
  2. 第二段
    [ u a u b u c ] = [ α b b α b c α b a α c b α c c α c a α a b α a c α a a ] [ q a ( 2 ) q b ( 2 ) q c ( 2 ) ] \begin{bmatrix}u_{a}\\\\ u_{b}\\\\ u_{c}\end{bmatrix}=\begin{bmatrix}\alpha_{bb}&\alpha_{bc}&\alpha_{ba} \\\\\alpha_{cb}&\alpha_{cc}&\alpha_{ca} \\\\\alpha_{ab}&\alpha_{ac}&\alpha_{aa}\end{bmatrix}\begin{bmatrix}q_{a}^{(2)} \\\\q_{b}^{(2)} \\\\q_{c}^{(2)}\end{bmatrix} uaubuc = αbbαcbαabαbcαccαacαbaαcaαaa qa(2)qb(2)qc(2)
  3. 第三段
    [ u a u b u c ] = [ α c c α c a α c b α a c α a a α a b α b a α b a α b b ] [ q a ( 3 ) q b ( 3 ) q c ( 3 ) ] \begin{bmatrix}u_{a}\\\\ u_{b}\\\\ u_{c}\end{bmatrix}=\begin{bmatrix}\alpha_{cc}&\alpha_{ca}&\alpha_{cb} \\\\\alpha_{ac}&\alpha_{aa}&\alpha_{ab} \\\\\alpha_{ba}&\alpha_{ba}&\alpha_{bb}\end{bmatrix}\begin{bmatrix}q_{a}^{(3)} \\\\q_{b}^{(3)} \\\\q_{c}^{(3)}\end{bmatrix} uaubuc = αccαacαbaαcaαaaαbaαcbαabαbb qa(3)qb(3)qc(3)

上述三个段的矩阵可以简写为:
u = α ( 1 ) q ( 1 ) u = α ( 2 ) q ( 2 ) u = α ( 3 ) q ( 3 ) \boldsymbol{u}=\boldsymbol{\alpha}_{\left(1\right)}\boldsymbol{q}_{\left(1\right)} \\ \boldsymbol{u}=\boldsymbol{\alpha}_{\left(2\right)}\boldsymbol{q}_{\left(2\right)} \\ \boldsymbol{u}=\boldsymbol{\alpha}_{(3)}\boldsymbol{q}_{(3)} u=α(1)q(1)u=α(2)q(2)u=α(3)q(3)

解出三个段的 q \boldsymbol{q} q的矩阵:
q ( 1 ) = α ( 1 ) − 1 u = c ( 1 ) u q ( 2 ) = α ( 2 ) − 1 u = c ( 2 ) u q ( 3 ) = α ( 3 ) − 1 u = c ( 3 ) u \boldsymbol{q}_{\left(1\right)}=\boldsymbol{\alpha}_{\left(1\right)}^{-1}\boldsymbol{u}=\boldsymbol{c}_{\left(1\right)}\boldsymbol{u}\\\\ \boldsymbol{q}_{\left(2\right)}=\boldsymbol{\alpha}_{\left(2\right)}^{-1}\boldsymbol{u}=\boldsymbol{c}_{\left(2\right)}\boldsymbol{u}\\\\ \boldsymbol{q}_{\left(3\right)}=\boldsymbol{\alpha}_{\left(3\right)}^{-1}\boldsymbol{u}=\boldsymbol{c}_{\left(3\right)}\boldsymbol{u} q(1)=α(1)1u=c(1)uq(2)=α(2)1u=c(2)uq(3)=α(3)1u=c(3)u

电荷就取三个段的平均值
q = 1 3 ( q ( 1 ) + q ( 2 ) + q ( 3 ) ) = 1 3 ( c ( 1 ) + c ( 2 ) + c ( 3 ) ) u = c u \boldsymbol{q}=\frac{1}{3}(\boldsymbol{q}_{(1)}+\boldsymbol{q}_{(2)}+\boldsymbol{q}_{(3)})=\frac{1}{3}(\boldsymbol{c}_{(1)}+\boldsymbol{c}_{(2)}+\boldsymbol{c}_{(3)})\boldsymbol{u}=\boldsymbol{c}\boldsymbol{u} q=31(q(1)+q(2)+q(3))=31(c(1)+c(2)+c(3))u=cu

矩阵 c = 1 3 ( c ( 1 ) + c ( 2 ) + c ( 3 ) ) \boldsymbol{c}=\frac{1}{3}(\boldsymbol{c}_{(1)}+\boldsymbol{c}_{(2)}+\boldsymbol{c}_{(3)}) c=31(c(1)+c(2)+c(3))可以通过数值计算的方法计算出,写成如下的形式:
[ q a q b q c ] = [ c s c m c m c m c s c m c m c m c s ] [ u a u b u c ] \begin{bmatrix}q_{a}\\\\ q_{b}\\\\ q_{c}\end{bmatrix}=\begin{bmatrix}c_s&c_m&c_m \\\\c_m&c_s&c_m \\\\c_m&c_m&c_s\end{bmatrix}\begin{bmatrix}u_{a} \\\\u_{b} \\\\u_{c}\end{bmatrix} qaqbqc = cscmcmcmcscmcmcmcs uaubuc

矩阵 c \boldsymbol{c} c是平衡矩阵。

对于三相正序电压,有 u a + u b + u c = 0 u_a+u_b+u_c=0 ua+ub+uc=0,带入之后可得:

q a = ( c s − c m ) u a q b = ( c s − c m ) u b q c = ( c s − c m ) u c q_a=(c_s-c_m)u_a\\\\ q_b=(c_s-c_m)u_b\\\\ q_c=(c_s-c_m)u_c qa=(cscm)uaqb=(cscm)ubqc=(cscm)uc

可以得到每一相的等效电容值:
c 1 = c s − c m c_1=c_s-c_m c1=cscm

实际中,线路对地距离远大于三相导线之间的距离 H ≫ D H\gg D HD,可以算出正序等值电容:
C = 1 1.8 ln ⁡ D m r × 1 0 10 ( F/m ) C=\frac{1}{1.8\ln\frac{D_m}{r}\times 10^{10}}\quad (\text{F/m}) C=1.8lnrDm×10101(F/m)

工频下,架空线路单位长度正序等值电纳:
b = ω C = 7.85 lg ⁡ D m r × 1 0 − 6 ( S/km ) b=\omega C=\frac{7.85}{\lg\frac{D_m}{r}}\times 10^{-6} \quad (\text{S/km}) b=ωC=lgrDm7.85×106(S/km)

第二种假设

假设三个相的电荷相等,即 q 1 = q 2 = q 3 q_1=q_2=q_3 q1=q2=q3

根据相同的换位方法,也会出现三段,给每一段列出矩阵:
u 1 = α 1 q 1 u 2 = α 2 q 2 u 3 = α 3 q 3 \boldsymbol{u}_1=\boldsymbol{\alpha}_1\boldsymbol{q}_1\\\\ \boldsymbol{u}_2=\boldsymbol{\alpha}_2\boldsymbol{q}_2\\\\ \boldsymbol{u}_3=\boldsymbol{\alpha}_3\boldsymbol{q}_3 u1=α1q1u2=α2q2u3=α3q3

然后推出每一相的平均电压:
[ u ‾ a u ‾ b u ‾ c ] = 1 3 ( α 1 + α 2 + α 3 ) ⋅ [ q a q b q c ] \begin{bmatrix}\overline{u}_a\\\\ \overline{u}_b\\\\ \overline{u}_c\end{bmatrix}= \frac{1}{3}(\boldsymbol{\alpha}_1+\boldsymbol{\alpha}_2+\boldsymbol{\alpha}_3)\cdot \begin{bmatrix}q_a\\\\ q_b\\\\ q_c\end{bmatrix} uaubuc =31(α1+α2+α3) qaqbqc

然后通过数值计算的方法,计算出矩阵的值,形式如下:
[ u ‾ a u ‾ b u ‾ c ] = [ α s α m α m α m α s α m α m α m α s ] [ q a q b q c ] \begin{bmatrix}\overline{u}_a\\\\ \overline{u}_b\\\\ \overline{u}_c\end{bmatrix}= \begin{bmatrix}\alpha_s&\alpha_m&\alpha_m \\\\\alpha_m&\alpha_s&\alpha_m \\\\\alpha_m&\alpha_m&\alpha_s\end{bmatrix} \begin{bmatrix}q_a\\\\ q_b\\\\ q_c\end{bmatrix} uaubuc = αsαmαmαmαsαmαmαmαs qaqbqc

然后带入q的关系 q 1 = q 2 = q 3 q_1=q_2=q_3 q1=q2=q3,求出来每一相的电压和电荷关系:
u a = ( α s − α m ) q a u b = ( α s − α m ) q b u c = ( α s − α m ) q c u_a=(\alpha_s-\alpha_m)q_a\\\\ u_b=(\alpha_s-\alpha_m)q_b\\\\ u_c=(\alpha_s-\alpha_m)q_c ua=(αsαm)qaub=(αsαm)qbuc=(αsαm)qc

计算出等效电容值:
C = 1 α = 2 π ε 0 ln ⁡ D m r = 5.56 ln ⁡ D m r × 1 0 − 11 ( F/m ) C=\frac{1}{\alpha}=\frac{2\pi\varepsilon_0}{\ln\frac{D_m}{r}}=\frac{5.56}{\ln\frac{D_m}{r}}\times 10^{-11}\quad (\text{F/m}) C=α1=lnrDm2πε0=lnrDm5.56×1011(F/m)

  • 9
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值