特殊模型的MatCap适配

光照效果相关文章目录

大家好,我是阿赵,这里补充一篇关于MatCap的文章。

一、正常版本MatCap会遇到的问题

之前介绍过了MatCap的工作原理,很简单,把物体的法线转到观察空间(view),然后得到一个UV乘以0.5+0.5改变一下取值范围从法线方向的-1到1,转换到uv的0到1范围,就可以去采样一张MatCap贴图来模拟光照了。
但这里会出现一个问题。假如我把之前做的MatCap材质赋给一个Cube,会发现情况和我们相信的不一样。
在这里插入图片描述

这里的两个对象,一个cube立方体和一个球体,它们用的是同一个材质球,可以看到,球体上面的MatCap效果是正确的,但立方体上面却没有出现我们想要的MatCap效果。是不是很奇怪?
出现这个问题的原因是,立方体的每一个面,法线方向都是一样的,所以在计算法线转换到观察空间后,整个面的法线映射的UV都是同一个值,导致采样出来的MatCap颜色,整个面都是同一个UV坐标,所以得到的颜色也是同一个面的颜色是相同的。

二、解决方法

1、完整Shader

Shader “azhao/MatCapEx”
{
Properties
{
_MatcapTex(“MatcapTex”, 2D) = “white” {}
}
SubShader
{
Tags { “RenderType”=“Opaque” }
LOD 100

    Pass
    {
        CGPROGRAM
        #pragma vertex vert
        #pragma fragment frag


        #include "UnityCG.cginc"

        struct appdata
        {
            float4 vertex : POSITION;
            float2 uv : TEXCOORD0;
			float3 normal : NORMAL;
        };

        struct v2f
        {                
            float4 pos : SV_POSITION;
			float2 uv : TEXCOORD0;
			float3 viewNormal : TEXCOORD1;
			float3 viewPos : TEXCOORD2;
        };

        sampler2D _MatcapTex;
        float4 _MatcapTex_ST;

        v2f vert (appdata v)
        {
            v2f o;
            o.pos = UnityObjectToClipPos(v.vertex);
            o.uv = TRANSFORM_TEX(v.uv, _MatcapTex);
			float4 worldNormal = mul(unity_WorldToObject, v.normal);
			o.viewNormal = mul(worldNormal, UNITY_MATRIX_V).xyz;
			o.viewPos = mul(UNITY_MATRIX_MV, v.vertex).xyz;
            return o;
        }

        half4 frag (v2f i) : SV_Target
        {				
			float3 viewPos = normalize(i.viewPos);
			float3 viewNormal = i.viewNormal;
			float3 crossVal = cross(viewPos, viewNormal);
			float2 curUV = float2(-crossVal.y, crossVal.x);
			curUV = curUV * 0.5 + 0.5;
            // sample the texture
			half4 col = tex2D(_MatcapTex, curUV);

            return col;
        }
        ENDCG
    }
}

}

2、说明

为了解决刚才同一个面的法线都是一样的情况。其实有多种方法的。最简单的方法,是在原有法线的基础上,再通过一些因素去稍微改变一下。比如上面的例子,会把物体的顶点坐标转换到View空间去,然后再和原来的观察空间法线做一个叉乘,求出一条新的法线方向出来。这样虽然同一个面的基础法线方向一样,但由于顶点不一样,所以导致最终法线的方向也有了一些偏移,不会整个面都一样。
或者另外一种解决办法,通过构造圆形的方式,以模型顶点坐标和模型中心点做一个向量方向出来,再和原来的法线方向做法线混合操作,也是可以解决的。
在这里插入图片描述

经过修改之后,现在立方体上面也出现了MatCap的假反射效果,而不再是同一个面只有一种颜色了。

三、题外话

经过这个例子,还给我们另外一个启示。我们做一种效果的时候,千万不能只记住了步骤,而不知道它的原理。在知道原理的情况下,遇到问题想要解决是很简单的事情,但如果不知道原理,只是死记住了实现的步骤,那么稍微出点问题,也就很难解决了。
我最近都直接分享案例的源码出来给大家,原因除了之前说的方便我自己查找以外,还有其他的原因的,就是这些代码其实都是我随手写的,可能不是很严谨,但也达到了说明重点的目的。如果是有心学习的朋友,细看一下内容,再在上面做修改是很容易的。由于是随手写的代码,写得有点随意,所以如果有哪里写得不严谨,就只能各位自己去解决一下了,如果只是单纯想抄代码的朋友,其实也无妨,只是遇到代码本身有问题的时候,会麻烦一点。

YOLOv8(You Only Look Once version 8)是一种实时物体检测算法,适用于大规模场景下的快速定位和识别。训练 YOLOv8 模型以适应所有图像通常需要经过以下几个步骤: 1. 数据预处理:收集并准备大量的标注图片数据,包含目标物体及其位置信息。由于要适应各种图像,数据应尽可能多样化,包括不同尺寸、光照条件、角度等。 2. 调整网络架构:YOLOv8 提供了不同规模的模型(如 tiny, small, large 等),选择合适的模型取决于应用场景对速度和精度的需求。如果你的目标是在内存有限或计算资源较弱的设备上运行,可以选择更轻量级的版本。 3. 修改配置文件:Yolov8 的训练过程通常依赖于一个配置文件(例如 .yaml 或 .cfg 文件),你需要调整锚点大小、步长、类别数等参数,使之能够适应不同的输入尺寸。 4. 定义损失函数:YOLOv8 使用 MultiBox Loss 函数,这个损失函数考虑了预测框的位置、大小以及置信度,确保模型对于不同尺度的物体都能准确预测。 5. 开始训练:使用预处理后的数据集,通过深度学习框架(如TensorFlow、PyTorch或Darknet本身)训练模型。训练过程中可能会涉及到批量大小、优化器、学习率策略等超参数的选择。 6. 验证与调整:定期评估模型在验证集上的性能,调整参数以防止过拟合,并提高泛化能力。 7. 测试模型:在完成训练后,使用未见过的新图像测试模型的实际效果,如果发现有适应性问题,可能需要微调或者增加更多的训练样本。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值