使用SHAP解释神经网络回归预测模型,‘DeepExplainer‘ object has no attribute ‘masker‘,

本文介绍了如何在PyTorch搭建的神经网络中使用SHAP进行模型解释,强调了DeepExplainer在神经网络模型中的独特用法以及shap_values和expected_value的概念。作者还展示了如何生成整体shap图和bar_plot以可视化解释结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#使用SHAP进行神经网络模型的解释与其他回归模型(例如SVR,RF)调用有些不同,在此记录。详细学习SHAP可以访问SHAP官网#

SHAP安装

 本人是在pycharm下使用SHAP,直接在终端进行pip安装就可以。pip install shap

使用SHAP进行神经网络模型解释

本人使用pytorch搭建的神经网络,假设训练好的模型为net,训练数据输入值为X,标签为target。

使用SHAP最终目的就是为了计算shap_values与基准值,首先要定义一解释器,神经网络要使用DeepExplainer解释器。定义好解释器后通过explainer.shap_values就可以得到每个变量的shap_values值。对于基准值可以使用explainer.expected_value获得。

解释神经网络预测模型就是这点与其他预测的不同,别的回归可以直接explainer(X)得到一个包含shap_values与expected_value的对象。而神经网络只能通过explainer.shap_values(X)获得一个narrary值。

通过下面代码可以输出整体shap图

import shap
explainer = shap.DeepExplainer(net, X)
shap_values = explainer.shap_values(X)
feature_names=['T','l','a','aT'] 
shap.summary_plot(shap_values, X,feature_names=feature_names)

shap_values与expected_value的意义

g(x')=E_{X}(\hat{f}\left(X\right))+\sum_{j=1}^M\phi_j

其中E_{X}(\hat{f}\left(X\right))explainer.expected_value,shap_values为\phi_j

所以sum(shap_values[0])+explainer.expected_value与net(X[0])的数值相同

 解释神经网络可以绘制哪些图

shap.bar_plot(shap_values=shap_values[1])
内容概要:本文详细介绍了如何利用PyTorch构建并解释基于Transformer架构的回归模型。主要内容分为四个部分:首先是数据处理,通过对NHANES数据库中的数据进行归一化处理,将15个自变量和1个因变量准备好用于建模。其次,构建了一个仅含Encoder模块的Transformer回归模型,该模型由4层Encoder和一层全连接网络组成,用于处理15维数值特征。第三部分是模型评估,采用均方误差作为损失函数,并计算了测试集上的召回率、F1分数、Kappa系数和精确率等指标。最后,使用Shap库中的KernelExplainer对模型进行了详细的解释,绘制了多种类型的可视化图表,如汇总图、依赖图、热力图和决策图,帮助理解模型的决策过程和各特征的重要性。 适合人群:熟悉Python编程语言并对深度学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解Transformer模型内部机制以及如何对其进行解释的人群。 使用场景及目标:①理解如何使用PyTorch搭建Transformer回归模型;②掌握Shap库的应用,能够对复杂的机器学习模型进行有效的解释;③学会通过不同的可视化工具来解读模型的行为,从而提高模型透明性和可信度。 其他说明:文中提供了完整的代码示例和详细的步骤指导,使得读者可以在本地环境中复现实验结果。此外,还提到了一些实际应用中的注意事项,如数据预处理的重要性、选择合适的背景数据量以减少计算负担等。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值