Query 改写综述:提升信息检索效率与准确性的关键技术

在信息爆炸的时代,如何从海量数据中快速准确地找到用户所需的信息,成为了一个亟待解决的问题。Query 改写,作为信息检索(优化检索增强生成(RAG)管道:实现更智能AI回应的高级技术)领域的一项重要技术,通过调整和优化用户查询,显著提升了检索系统的效率和准确性。今天我们一起了解一下Query改写的定义、分类、关键技术及其在信息检索中的应用,以期为相关领域的研究者和从业者提供参考和启示。

一、Query 改写的定义与重要性

Query 改写,顾名思义,是指对用户的原始查询进行一系列操作,以生成更优化、更精确的查询表达。这些操作可能包括同义词替换、相关概念扩展、查询重组等。其目的在于缩小查询范围,提高检索结果的相关性和准确性。在信息检索过程中,用户的查询往往简洁而模糊,可能包含歧义或多义性,直接进行检索往往难以获得满意的结果。通过Query改写,可以将这些模糊、不完整的查询转化为更具体、明确的表达,从而显著提升检索效果&#x

### RAG 查询语句的优化改写 #### 查询生成/改写的原理 为了提高检索效率准确性,在RAG框架下,查询生成阶段利用LLM模型对用户的初始查询进行改写,从而生成多个版本的新查询。这些新查询旨在从不同角度捕捉用户意图,进而提升后续检索的质量[^1]。 ```python def generate_rewritten_queries(initial_query, llm_model): """ 对输入的初始查询进行多次改写,返回一系列新的查询列表 参数: initial_query (str): 用户提出的原始问题 llm_model : 已训练好的大型语言模型实例 返回: list of str: 多个经过改写的查询字符串组成的列表 """ rewritten_queries = [] # 基于llm_model生成多种可能的询问方式 for _ in range(5): # 控制生成数量 new_query = llm_model.rewrite_query(initial_query) rewritten_queries.append(new_query) return rewritten_queries ``` #### 向量搜索过程中的应用 对于每一个由上述方法产生的查询变体,系统会执行一次独立的向量匹配操作来获取最接近目标的信息片段。通过这种方式,即使原问题是模糊不清或是表述不够精确的情况下,也能找到更多潜在的相关资料作为候选答案源。 #### 排序机制的作用 值得注意的是,在完成多轮次的向量查找之后,RAG-Fusion引入了一种特殊的排序策略——即所谓的“倒数排名融合”。这一技术能够综合考虑各个查询路径下的文档关联度得分,并据此调整最终呈现给下游模块处理的结果顺序。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值