AutoReason:自动Few-Shot推理分解

当下大型语言模型(LLMs)备受瞩目。然而,尽管LLMs在许多自然语言任务上表现出色(LLM的擅长与不擅长:深入剖析大语言模型的能力边界),它们在处理需要复杂多步推理的任务时仍面临挑战。为了解决这一问题,伊兹密尔理工学院的研究人员提出了AutoReason框架。AutoReason通过自动生成推理步骤,有效提升了LLMs在复杂推理任务中的表现,并增强了其可解释性。本文将详细介绍AutoReason的架构、原理及其实验效果。希望对大家有所帮助

一、AutoReason架构

AutoReason框架采用了一种创新的双层模型方法,该方法结合了强模型和弱模型的协同作用。具体而言,一个更强大的模型(如GPT-4)用于生成基本的推理步骤,而一个相对较弱的模型(如GPT-3.5 Turbo)则将这些步骤提炼成可操作的答案。这种设计旨在弥补隐式查询复杂性和显式逐步解决方案之间的差距,同时提高推理的准确性和可解释性。

AutoReason的工作流程可以细分为以下几个阶段:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值